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Abstract

Broad-scale geographic gradients in species richness have now been extensively documented, but their historical
underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the
determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-
replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and
apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past
environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism,
organisms generally reside in climatically defined bioregions, or ‘‘evolutionary arenas,’’ characterized by in situ speciation
and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy
available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day
species richness of the world’s main 32 bioregions is best explained by a model that integrates area and productivity over
geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of
within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain.
These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual
and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers
the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and
ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients.
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Introduction

The uneven distribution of species diversity is a key feature of

life on Earth and has myriad implications. While the scale-

dependence of the determinants of the global variation in diversity

is well acknowledged [1–6], to date a quantitative accounting of

the roles of history and environment in generating and

maintaining gradients in species richness is still lacking. Over the

past three decades, increased data availability has facilitated

analyses of contiguous geographic patterns in species richness at

relatively fine spatial grains (100–200 km) at both continental [7–

9] and global scales [10,11]. At these spatial resolutions,

environmental variables such as productivity or temperature have

been shown to offer extremely strong statistical predictions of

species richness [8,11–18]. However, it has been difficult to

connect these results directly with underlying evolutionary and

ecological processes. One problem is that the ultimate drivers

underpinning diversity, namely speciation and extinction [19],

operate at scales much larger than the spatial resolution (e.g.,

100 km grids) of most analyses. A number of studies have

confirmed the strong effect of regional richness on local richness

[1–3,6,20] and have speculated on the role of energy driving

diversification at regional scales [21–24] as well as sorting at local

scales [25–27]. But attempts to integrate them at the appropriate

scale have been limited, and we know of no study that has

quantified the effect of productivity on richness gradients jointly at

regional and local scales and both in terms of evolutionary and

ecological processes.

Another impediment to interpretations of gridded richness

analyses has been that species’ geographic ranges are generally

much larger than, for example, 100 km6100 km grid cells,

resulting in geographically non-random patterns of pseudo-

replication, inflated spatial autocorrelation, and an overrepresen-

tation of wide-ranging species and their respective climatic

associations [8,28]. These issues have to date precluded straight-

forward evolutionary and ecological interpretations of macro-

ecological environment correlations of gridded richness patterns

[5,29]. While partly motivated by limits in the knowledge of fine-

scale species distributions [30], macroecological analyses have also

been conducted using, for example, ca. 800 ecoregions as spatial
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units [14,31], but these regions still incur significant and

geographically variable redundancy in species. We are not aware

of a study on richness gradients that has successfully overcome this

problem and thus truly have given each species equal weight.

Finally, while there is little doubt about the importance of time

for diversification [32–34], attempts to date to invoke paleoclimate

for understanding richness have been hampered by the lack of

data, especially at deeper time scales. Several studies have linked

relatively recent climatic oscillations, for example, those causing

quarternary high-latitude glaciation, to geographic richness

patterns [22,35–37]. The geography of deeper time climate

conditions and exactly how it relates to the tempo of past clade

diversification is inherently difficult to estimate. But given deep

conservatism in the environmental (e.g., biome) associations within

clades [38,39] compared to relatively dynamic geographic ranges

[40], clades are expected to much more strongly track climatically

defined regions, or biomes, rather than specific geographical

locations over evolutionary history. The ages of biomes may thus

offer a promising avenue for understanding the role of paleocli-

mate contributing to contemporary patterns of species richness

and have recently been successfully correlated with both turtle and

tree richness at the regional scale [41,42]. To date, analyses

connecting the age and area of regions to finer grain richness

patterns have not been attempted.

Here, we aim to address these problems with a hierarchical

framework that integrates the drivers of regional diversification of

species with those of their sorting into finer grain assemblages at

their respective scales of influence. We use this model to test the

relative importance of past spatio-temporal variation of climatic

conditions (specifically time-integrated area and productivity)

versus contemporary environment for explaining both the regional

and finer scale variation in the species richness of terrestrial

vertebrates worldwide. Due to environmental niche conservatism,

organisms are generally restricted to climatically defined bior-

egions, or ‘‘evolutionary arenas,’’ characterized by in situ

speciation and extinction. We expect differences in species richness

between such regions to arise from different levels of net

diversification (speciation – extinction over time). The number of

speciation and extinction events should vary among regions due to

differences in the sizes of populations over time and the

opportunities for reproductive isolation for all resident taxa [32].

We expect these drivers to be associated with today’s area

[29,32,43] and energy availability (i.e., productivity) [8,11–14] of

bioregions but, critically, also with the past levels of these factors—

that is, how bioregions have varied in areal extent and productivity

over time [42]. Furthermore, regional rates of diversification have

been hypothesized to vary with temperature and its effects on

activity and biological rates such as rates of molecular evolution or

species interactions [15–17,44]. We expect all of these drivers in

concert to shape broad-scale gradients of diversity and predict that

in an integrative assessment of regional differences in diversity, (i)

models accounting for the temporal availability of area or

productivity will outperform those without (i.e., regions that are

older and/or have in the past been larger in extent will support

higher vertebrate species richness than younger and/or smaller

regions), (ii) area times energy availability (net primary productiv-

ity) will be a stronger predictor of richness than area alone [13,45],

and (iii) average bioregion temperature will positively affect

richness above and beyond the effects of productivity and have a

stronger effect in ectotherms compared to endotherms [15].

We test these predictions for the 32 main subdivisions, or

‘‘bioregions,’’ of the world based on vegetation type and major

landmass (Figure 1, Tables S1 and S2) [46,47]. We excluded

montane regions (which exclusively harbor ca. 5% of vertebrate

species and represent ca. 15% of global land area) due to their

extremely steep environmental gradients and associated species

turnover, which impedes reliable bioregional delineation and

estimates of their extent over time. Over historical time-scales

these climatically and geographically distinct bioregions have been

characterized by similar environmental and climatic conditions,

but have changed in size and shape over time within their

respective realms [42]. All bioregions are within the range of scales

over which allopatric speciation of terrestrial vertebrate speciation

typically occurs (100–1,000 km scale [48]) and may thus be

considered bio-climatically and geographically distinct ‘‘evolution-

ary arenas.’’ After deriving time-integrated models of bioregion

species richness, we then in a second step assess their ability to

predict the variation in richness at the scale of 110 km grid cell

assemblages. We make these finer scale predictions first under a

model of simple random sorting of species from those predicted for

the bioregion and, second, under a model of sorting mediated by

the relative productivity of a grid cell. The goals of this second step

include (i) an evaluation of the ability of this hierarchical model to

make strong fine-scale richness predictions (while including

paleoclimate and avoiding regional-level conflation of sample size)

and (ii) a demonstration of the separate roles energy availability

has at different temporal and spatial scales.

Results and Discussion

Bioregion Historical Dynamics
Paleoclimatic data reveal dramatic variation in the age and

spatial dynamics of different bioregions from the end of the

Paleocene (55 MY bp) to the present day (Figure 1, Table S5). For

example, grasslands are not thought to have covered large areas

on earth until 8 million years ago, resulting in a much smaller area

over time than observed for, for example, temperate or tropical

moist forests that have a longer history (Figure 1). Linking

estimates of the extents of bioregions over time allows the

calculation of ‘‘time-integrated area’’ (TimeArea) [42], a synthetic

index of area available to the bioregion’s biota over time, varying

from just 486104 km2 integrated over 55 million years in the case

of the Mediterranean bioregion at the southern tip of Africa to

over 100,0006104 km2 in Eurasian temperate and African moist

tropical forests. Unlike bioregion extent and position, climatic

conditions of bioregions are assumed to be relatively static over

time [49], which allows the determination of average bioregion net

Author Summary

Understanding what determines the distribution of
biodiversity across the planet remains one of the critical
challenges in biology and has gained particular urgency in
the face of environmental change and accelerating species
extinctions. Our study develops a novel analytical frame-
work to jointly evaluate historical and contemporary
environmental predictors of the latitudinal gradient in
the diversity of terrestrial vertebrates. The number of
vertebrate species is greater in warm, productive biomes,
such as tropical forests, that have both a large size and a
long evolutionary history. Using just a few key predictor
variables—time, area, productivity, and temperature—we
are now able to explain more than 80% of the variability in
biodiversity among bioregions. By integrating each of
these factors at both the regional and local scale in a
hierarchical model, we are able to provide a consensus
explanation for broad-scale diversity gradients that en-
compasses both ecological and evolutionary mechanisms.

Global Gradients in Vertebrate Diversity
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primary productivity (Productivity) and Temperature. Summed

Productivity over bioregion Area yields total bioregion productivity

(AreaProductivity)—that is, total annual carbon flux measured in kg/

year over a whole bioregion, a measure that exhibits joint

dynamics with bioregion Area. But integrated over time in the form

of TimeAreaProductivity, it exhibits very different geographic patterns

than TimeArea (Figure 1) with, for example, African and IndoMalay

tropical moist forests experiencing a flux of over 8,00061017 kg of

carbon over the past 55 million years and the Mediterranean

regions of the New World and Africa just under 361017 kg.

Bioregion Biotic Independence
We summarized terrestrial vertebrate richness per bioregion as

Total (every species found in a bioregion), Resident (species for

which a given bioregion contains the largest portion of the range),

and Endemic (species that are restricted to a single bioregion; Table

S4). We find minimal overlap in Total species among bioregions

(median Jaccard similarity among bioregions: 4% for birds, 0% for

other taxa; Figure S1, Table S3), which confirms their relative

evolutionary isolation in addition to climatic and spatial

independence and a consistently strong pattern of biome

conservatism [38,50,51]. It also confirms that across all four

vertebrate groups these selected bioregions represent useful spatial

units that avoid the pseudo-replication of species: for Resident

species richness every species enters a given analysis exactly once,

and the number of distribution records is equal to the global

richness of species (13,860 endothermic mammals and birds,

11,836 ectothermic amphibians and reptiles; montane endemics

excluded). For Endemic species (total of 13,111 species and records)

bioregions are even more likely to represent the true regions of

origin compared to Resident species. We therefore expect a stronger

correlation of area and productivity integrated over time (Time-

AreaProductivity) with the diversity of Endemic species.

Bioregion Species Richness
All three predictions of our integrative model regarding the

effect of time-area-productivity on richness are confirmed

(Table 1). The models that account for time-integrated produc-

tivity and also include temperature as an additional predictor yield

the strongest fits. For endotherms, the time-integrated measures of

area outperform models that ignore time only for the Endemic

richness dataset, which offered the more direct test of our

hypotheses. Predictions of the two-predictor TimeAreaProductivity+
Temperature model are consistently strong across all four vertebrate

taxa, which represent independent replicates (Figure 2), explaining

over 77% of the variation in richness (Figure 2, N = 128, see

Tables S7 and S8 for more details). Models that fit TimeArea and

Productivity as statistically separate terms do not on the whole yield

stronger predictions (Table S9). This lends support to Wright’s

[45] parallel findings for large islands, which represent similarly

closed systems, and contrasts with previous results reported for

1106110 km grid cells [13]. The shape of the Productivity-richness

relationship is linear (in Endotherm Residents) or positive

accelerating in linear space (in Ectotherm Residents and both

Endemics groups). In contrast, the slopes of the AreaProductivity- and

TimeAreaProductivity-richness relationships, whether fitted with or

without Temperature, are all positive saturating—that is, species

richness tends to increase more steeply in the low than in the high

productivity ranges (coefficients in ln-ln space vary between 0.4

and 1, Table S7). We did not find evidence of a hump-shaped

Figure 1. Map of study bioregions and their area and annual productivity dynamics. The variation in area (black) and annual productivity
(red) over the last 55 million years forms the species richness predictors TimeArea (cumulative time-area, units 104 km26million years) and
TimeAreaProductivity (cumulative total productivity, units 1017 kg Carbon), respectively (values in upper right box corner). Panel boxes have one of
three different y-axis scales (note different line thicknesses and legend). For example, in tropical woody savannas and dry forests, the land area for the
last few million years has been ,16107 km2 in the Afrotropics, ,26106 km2 in Australia, and ,16105 km2 in Madagascar. See also Tables S1, S2, and
S5.
doi:10.1371/journal.pbio.1001292.g001

Global Gradients in Vertebrate Diversity

PLoS Biology | www.plosbiology.org 3 March 2012 | Volume 10 | Issue 3 | e1001292



pattern for any measure of productivity and richness at the

bioregional scale [52,53].

As predicted, ectotherm richness increases much more steeply

and strongly with temperature than endotherm richness, both

when fitted singly and when controlled for TimeAreaProductivity

(Figures S2 and S3, Table S7). This supports at the global scale the

significant and complementary effect temperature may contribute

to levels of regional ectotherm diversity (see also [4,14,44]). For

ectotherms, higher temperatures in tropical regions may be

promoting higher rates of genetic incompatibilities among

populations or faster rates of biotic interactions, further acceler-

ating speciation rates [44,54,55]. Alternatively, the thermal

dependence of activity represents a strong constraint on ectotherm

distribution [56], likely imposing limits on clade origination and

diversification in high-latitude regions. Third, in warm regions,

ectotherms are released from physiological and behavioral

adaptations to cold stress promoting a greater diversity of life

histories and metabolic ‘‘niches’’ [57,58]. These factors are not

mutually exclusive, and more work is needed for understanding

the potential role of temperature and thermal physiology in

driving diversification. Preliminary results from phylogenetic

analyses suggest increased diversification rates at lower latitudes

Figure 2. Observed versus predicted bioregion species richness of terrestrial vertebrates. Observed bioregion species richness (A,
Endemic species, B, Resident species) is plotted against that predicted by the two-predictor TimeAreaProductivity+Temperature model fit separately for
each of the four taxa (different symbols). Lines indicate least squares fit of regressions relating to observed predicted richness for each of the four taxa
over the 32 bioregions (r2 [Endemic] = 0.78, r2 [Resident] = 0.78, N = 128). For detailed results, see Table S7. Colors indicate biome membership (see the
map in Figure 1 to match colors).
doi:10.1371/journal.pbio.1001292.g002

Table 1. Relative performance of integrated single- and two-predictor models of bioregion species richness.

Predictor Variables Endemic Resident

Endotherms Ectotherms Endotherms Ectotherms

DAIC r2 DAIC r2 DAIC r2 DAIC r2

TimeAreaProductivity+Temperature 0 0.67 0 0.82 20 0.70 1 0.86

TimeArea+Temperature 0 0.68 0 0.82 14 0.75 0 0.87

AreaProductivity+Temperature 10 0.56 13 0.73 0 0.84 3 0.85

TimeAreaProductivity 20 0.36 46 0.22 31 0.56 55 0.20

TimeArea 23 0.29 49 0.14 32 0.54 58 0.13

AreaProductivity 26 0.22 50 0.10 22 0.66 57 0.16

Productivity 26 0.23 42 0.29 52 0.12 52 0.29

Area 31 0.09 53 0.02 35 0.49 61 0.04

Temperature 22 0.31 24 0.60 52 0.14 29 0.65

Endemic species are those restricted to a single bioregion and Resident counts species with the largest portion of their range in a given bioregion. Endotherms combine
mammals and birds, ectotherms combine reptiles and amphibians. Best models (DAIC,2) are highlighted in bold, and r2 refers to pseudo-r2 values based on fitting
model-predicted versus observed. Note that the results for both richness values are unaffected by the pseudo-replication that hampers the results of typical gridded
analyses of species richness. Predictor variables: Temperature, average temperature of bioregion; Area, current-day extent of a bioregion; Productivity, average bioregion
productivity; AreaProductivity, total bioregion productivity, that is, the product of Productivity and bioregion Area. TimeArea, time-integrated area, that is, the integrated
areal extent of a bioregion over 55 million years; TimeAreaProductivity, time-integrated productivity, that is, the product of Productivity and TimeArea. For further details
and results by taxon, see Methods and Tables S1, S2, S3, S4, S6, S7, S8, S9, S10.
doi:10.1371/journal.pbio.1001292.t001
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in both amphibians [59] and mammals [60], but with a much

weaker and more equivocal trend in the latter.

Overall, our bioregion results support the hypothesized

interactions of environmental conditions and area over time in

influencing the speciation and extinction and ultimately species

richness of biota in bioregions. We suggest that the bioregional

variation in time-integrated productivity successfully captures key

factors affecting both cumulative population sizes over time as well

as the different opportunities for reproductive isolation. Large,

productive areas like the Neotropical moist/wet forest biome have

been characterized by high productivity and a continuously large

extent, and thus have supported large populations of each of the

four vertebrate clades, since before the Eocene (70061012 km2

years and 66361018 kg Carbon produced since 55 MY bp;

Figure 1). Reproductive isolation has been facilitated by the large

amount of time that vertebrate populations have had to encounter

geographical barriers (such as rivers in non-volant mammals [61])

as well as heightened habitat heterogeneity related to the high

productivity (i.e., multiple vertical forest strata) [12]. This contrasts

with, for example, unproductive North American deserts, which

have only come to cover a substantial area within the last few

million years (1261012 km years and 361018 kg Carbon; Figure 1)

[62]. We suggest that the large TimeAreaProductivity seen in, for

example, the Neotropical forest compared to the North American

desert bioregion in Figure 1 reflects all factors affecting cumulative

population sizes over time (which have affected both speciation

and extinction probabilities) as well as opportunities for reproduc-

tive isolation. Together, these factors have led to the wide

discrepancy in vertebrate diversity between these two bioregions.

Previous studies have employed phylogenies or sister-group

comparisons to test whether the latitudinal diversity gradient

derives from more evolutionary time [63], niche conservatism

[38], or differences in speciation or extinction rates at different

latitudes [22,59,60,64]. Factors such as orbital forcing causing

glaciation at high latitudes have been posited to elevate extinction

rates and are expected to accentuate the observed disparities in

species richness among bioregions, especially for endemics [35,65].

The results reported here complement these studies and suggest

that at the bioregion scale, and over an extremely large window of

time (55 MY), diversification rates consistently vary with respect to

the area, age, and productivity of a given bioregion (Figure 2). We

thus view the time-integrated productivity of bioregions to be a

general explanation for why so many clades originate at lower

latitudes and correspondingly fewer have diversified into bior-

egions at higher latitudes. It is important to note that time alone is

not sufficient to explain these patterns: temperate bioregions are

just as ancient as tropical bioregions but strongly differ in their

cumulative time-integrated area and productivity. In sum, the

strong associations we find indicate a pathway toward first-order

approximations of rates of net species production per bioregion,

based on variation in area over time, productivity, and

temperature. Future studies could integrate our approach with

more detailed comparisons of clade-level diversification rates

among bioregions or combine it with existing phylogenetic

methods for quantifying correlates of diversification.

Finer Scale Species Richness
Having addressed key evolutionary drivers affecting the broad-

scale variation in vertebrate diversity, we next assess how each

bioregion’s species sort into grid cell assemblages and how both

processes combine to explain the finer scale geographic variation

in richness (Figure 3A). We perform this assessment for the 18,467

bird, mammal, and amphibian species in the bioregion analysis

and their 2,966,137 occurrences across the 9,253 1106110 km

terrestrial grid cells encompassed by the bioregions (Figure 3B).

Strong effects of regional- on fine-scale richness have previously

been demonstrated [1,2], and here we provide a first test of their

pervasiveness at a global scale by evaluating the performance of

bioregion models for explaining grid cell richness. We find that the

two-predictor TimeAreaProductivity+Temperature model developed

above (Table 1) alone explains 46%–60% and 32%–50% of the

variation in Resident richness and Total richness, respectively

(Figure 3B left column, Tables S11 and S12). This highlights

how regional effects together with even simple null models of

proportional sorting are able to explain much of the finer scale

richness patterns. Fine-scale–regional richness relationships are

known to be affected by spatial scale as well as by species’ dispersal

abilities [66]. In larger regions a grid cell of the same size

represents a smaller portion of the regional area and, assuming

similar levels of grid cell immigration/extinction, grid cell richness

is expected to be smaller. This should apply whenever average

species range sizes increase less than proportionally with bioregion

size and should be particularly noticeable for taxa with relatively

low dispersal rates or small within-bioregion range sizes (such as

amphibians compared to birds or mammals), because with

increasing bioregion size species will be progressively less likely

to occupy a given grid cell. We find these expectations confirmed.

Bioregion Area exhibits an additional negative effect and improves

fine-scale predictions, especially for Total richness. It does so most

strongly in Amphibians (Figure S4, Table S12), whose greater

dispersal limitation (and on average by a factor of four smaller

geographic ranges) compared to mammals or birds has been

previously suggested as contributing to their strong patterns of

species turnover [67].

Species vary strongly in the number of assemblages they occupy

and the species richness of grid cell assemblages is a function of the

drivers that affect species’ sorting and resulting overlap in

geographic ranges. One variable strongly associated with the

sorting into assemblages, particularly by wide-ranging species, is

local energy availability [8,25]. We find that relative productivity

in a grid cell (CellPropProductivity, i.e., the proportion of the

maximum grid cell productivity observed in a bioregion) predicts a

substantial additional amount of observed variation in grid cell

richness (Figure 3B middle column, Tables S12 and S13) and

confirms the expected greater tendency of species within a

bioregion to occupy high-productivity grid cells. Allowing the

shape of the richness–productivity relationship to vary among

regions improves predictions (Tables S12 and S13), but only

slightly so, suggesting a within-regional role of productivity that is

globally fairly consistent. Nevertheless, the total amount of

variation explained by the TimeAreaProductivity+Temperature model

(58%–77%) is remarkable and similar to that found in previously

published broad-scale gridded richness regression analyses [8,11].

Notably, however, the hierarchical approach avoids the dual

problems of species pseudo-replication and conflation of among-

and within-regional processes—issues that have seriously impeded

interpretations of all previous gridded biogeographic or macro-

ecological analyses at broad scales.

Our results largely corroborate past studies that have hypoth-

esized that net primary productivity should be a dominant

predictor of fine-grain assemblage richness [8,11,16]. However,

our hierarchical model is able to separate how productivity

influences species richness at different temporal and spatial scales.

At the bioregional scale, productivity should increase the

cumulative population size and opportunities for reproductive

isolation over time, promoting higher species richness in high-

productivity bioregions [12]. At the fine scale productivity affects

the occupancy of assemblages in relation to the regional pool

Global Gradients in Vertebrate Diversity
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Figure 3. Hierarchical prediction of species richness at the scale of 110 km grid cells (N = 9,253). (A) Conceptual outline of the model and
(B) empirical evaluation for the 110 km grid cell Total Richness of Mammals, Birds, and Amphibians. The model first fits differences in grid cell richness
among bioregions based on the Resident richness model of bioregion-level diversification (TimeAreaProductivity, Temperature, see Table 1, Figure 2;
additional effect of Area was also fitted and significant for Amphibians, see Figure S4, Table S12). Second, the effect of within-bioregion gradients in
productivity (CellPropProductivity, i.e., proportion of bioregion grid cell maximum, a measure that standardizes productivity across bioregions) is fitted
to predict subsequent sorting of each bioregions’ species into grid cell assemblages. The resulting hierarchical prediction of grid cell richness
accounts for the scale dependence of different effects and in the case of productivity addresses the different mechanisms of the same variable at
different scales. In (B), lines indicate least squares model fits (r2 values for observed–predicted; bioregion level, grid cell level, respectively: r2

[Birds] = 0.40, 0.61; r2 [Mammals] = 0.45, 0.58; r2 [Amphibians] = 0.59, 0.77). Boxplots (left panels) summarize points for each of the 32 bioregions.
Colors indicate biome membership (see Figure 2 for legend). See also Figure S4 and Tables S12 and S13. Partial residuals illustrate the relationship
between a predictor and the response given other predictors in the model.
doi:10.1371/journal.pbio.1001292.g003
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[27,68]. In addition to the sampling effects inherent with larger

assemblage-level population sizes, increased productivity may

promote greater richness due to an increased number of niches

facilitating species coexistence [12,25].

Conclusions
We consider the contributions of this study to be conceptual in

addition to empirical and hope that its framework will inspire

further consideration of diversity gradients that aims to integrate

ecological and evolutionary mechanisms across scales. Our global

hierarchical approach represents an analytical paradigm shift

away from the traditional analysis of fine-scale assemblages as

independent spatial units. But there are obvious limits to our

analysis. While the strong association of vertebrates with dominant

vegetation types and the observed biotic independence of

bioregions support their delineation as major evolutionary arenas,

challenges remain surrounding the demarcation of the exact

boundaries of such regions, the accuracy of past climate

reconstructions, and their comparability across clades. Future

availability of higher resolution phylogenies of the four vertebrate

clades will allow more rigorous comparative approaches within

and across lineages, but even comprehensive, strongly supported

phylogenetic reconstructions are unlikely to provide vital infor-

mation regarding the estimation of ancestral distributions (or

ranges) and extinction rates [69]. Thus, our model can be viewed

as a template on top of which other processes surely influence the

origin and maintenance of diversity. For example, glaciation cycles

influence speciation and extinction rates [36] and play an

important role in driving recent speciation over broad scales

[70]. Historical climate dynamics along elevation gradients in

particular are known to create opportunities for rapid climate-

associated parapatric or allopatric speciation and contribute

strongly to the high richness of many tropical mountain areas

[71–73]. Furthermore, a multitude of trophic interactions are

likely to interact with these large-scale processes to cause positive,

coevolutionary feedback loops, thus further increasing fine-scale

and regional diversity [15].

Our findings show that energy availability has a large effect on

both the regional pool and local sorting of richness. This highlights

its importance for both evolutionary and ecological processes and

the critical need to integrate these effects. This is especially crucial

today, given the attention paid to recent models predicting the

effects of climate change on the richness of whole gridded

assemblages. The redundancy of information and conflation of

ecological and evolutionary processes in smaller scale models

impede interpretation in a way that is overcome in our analysis.

Here we have shown how history can be integrated into a model

predicting diversity with area, productivity, and temperature at the

global scale. The separate consideration of drivers of diversifica-

tion and finer scale occupancy and their joint effects on observed

gradients of species richness should help pave the way for a more

integrated macro-evolutionary and -ecological understanding of

the origin and maintenance of global richness gradients.

Materials and Methods

Bioregion Selection, Time-Integrated Area Calculations
We selected 32 well-established, geographically and climatically

distinct bioregions (Figure 1). These bioregions correspond to the

biomes (tundra, desert, grassland, boreal forest, temperate forest,

tropical moist/wet forest, tropical dry forest/savanna, and

Mediterranean forest/shrublands) within the world’s main bio-

geographic realms (Neartic, Paleartic, Neotropical, Australian,

IndoMalayan, and Afrotropics) as described by Olson et al. [46]

and also used in the Wildfinder vertebrate distribution database

(see below) [74]. Although we do not have detailed, fine-scale

records throughout every interval of time for the past 55 million

years, enough information exists regarding the age of all biomes

and directionality of their expansion and contraction to make

reasonable estimates of the measures of their area integrated over

time (Table S5). We excluded the ‘‘Mangroves’’ biome (Biome ID

14 in [46,74]) and also the ‘‘Montane Grasslands & Shrublands’’

Biome (Biome ID 10 in [46,74]). The latter was not included due

to the difficulty in estimating areal and climate changes over their

steep gradients over such a long time period. For example, in the

Andes, different biomes occur at different elevations on the

western and eastern slopes at different latitudes, and the available

data are not sufficient to accurately estimate the elevations of the

southern, central, and northern Andes at various time intervals

since the Miocene, as each chain has uplifted at different rates and

at different times [75]. This is critical information to be able to

reconstruct the areal extent over time of each bioregion in the

Andes and a general problem common to all of the world’s

mountain ranges, which is why they were excluded from our

analysis.

The last 55 million years is an appropriate interval of time to

measure the time-integrated area of the world’s biomes within

realms for two reasons. First, the beginning of the window of time

is 10 million years after the massive extinction, which occurred 65

million years ago, causing major upheaval in the vertebrates. By

55 million years ago, the biosphere had recovered but its biota was

very different from the plants and animals that had dominated the

Cretaceous. Second, most of the ‘‘higher taxa’’—that is, ancestors

of modern lineages of vertebrates that now dominate the extant

diversity of mammals, birds, amphibians, and reptiles (for

example, fossils recognizable as extant genera)—are already

represented in the fossil record by 55 million years ago [76].

Plant communities by the Eocene are, for the first time, composed

of Angiosperms and Gymnosperms that are recognizable as the

‘‘genera’’ and ‘‘families’’ that are dominant in today’s biomes

[62,77]. Thus, the biota in the Eocene has a ‘‘modern aspect’’

[76,77].

The Earth’s biomes have experienced large changes over the

last 55 million years due to the consistent pattern of cooling and

drying that has steadily taken place over this period of time

[62,78,79]. Average global temperatures have plummeted from

27uC 55 million years ago to today’s average of 15uC and

precipitation has similarly dropped [62,80]. For the moist/wet

forest biomes (boreal forest, temperate forest, and tropical moist/

wet forest) we used maps generated by Fine and Ree (2006) that

were based on five sources: [49,62,81–83]. For the other biomes,

our approach to estimate the time-integrated area of each biome

was first to try to determine the paleobotanical consensus opinion

for the age of each biome (Table S5). Then, we took the extant

area of that biome and backcasted in time over the years that it has

been present, reasoning that as tropical forests have receded

during the past 55 MY years, dry and cold biomes such as tundra,

desert, Mediterranean, grassland, and dry forest/savanna must

have increased in size from the date of their origin to today’s area.

We made two interpretations—a ‘‘wet’’ and a ‘‘dry’’ interpre-

tation (Table S5). These two interpretations span the diverse

opinions regarding the extent and age of the world’s biomes over

the last 55 million years and thus gauge the robustness of our

results according to a range of expert opinions. For example,

desert plants are absent in fossil records until about 2 Ma [77],

even though it is hypothesized with molecular dating that plant

lineages today found only in desert floras are at least 50 Ma old

[62]. Thus, the consensus opinion is that deserts were probably
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present in the Eocene, but much restricted in size compared to

today. For example, evaporite sediments point to extreme aridity

in western Africa, Arabia, and central Asia in the late Miocene

[82]. We thus made two estimates for the time-integrated area of

desert biomes. The ‘‘wet’’ interpretation gives deserts an origin of

34 MYA but covering 10% of their current area from 34 MYA

until 2 MYA, which is consistent with the lack of fossil evidence for

any desert plant communities. The ‘‘dry’’ interpretation also gives

the origin of deserts 34 MYA but has deserts covering the same

areal extent as today since their origin, which is almost certainly an

overestimate but is possible given the ancient age of some desert

plant lineages and the difficulty of fossilization of desert

environments (Table S5).

Our wet and dry interpretations both yield qualitatively similar

results, and for simplicity, we focus on the ‘‘wet’’ interpretation

throughout the article. The current-day extent of a bioregion as

given in [46] yielded our predictor variable Area (units km2). Time-

integrated area (TimeArea, in units year km2) was given as the

integrated areal extent of a bioregion over 55 million years, or

simply the sum of the area estimated for each of the 55 one-

million-year periods. We acknowledge that this offers only a first

order approximation. While exact values will be subject to change

as paleoecological knowledge advances, we expect these changes

to refine the details rather than radically alter overall patterns,

which would have relatively little effect on our analyses, and thus

we do not expect systematic biases in our results.

While topographic heterogeneity is expected to also influence

the potential for reproductive isolation [32], in this dataset (which

excludes montane regions) it is largely captured by bioregion Area

and does not yield improved predictions (see Table S12).

Bioregion Species Data
We aggregated existing eco-regional terrestrial vertebrate

species lists for the selected 32 bioregions from the Wildfinder

distribution database [74]. We excluded all eco-regions in biomes

not selected for analysis (see above), including all montane eco-

regions (which have a total of 1,015 terrestrial vertebrate species

restricted to them). This resulted in 54,122 bioregion occurrence

records for 25,696 species (9,229 birds, 4,607 amphibians, 4,631

mammals, and 7,229 reptiles). We calculated terrestrial vertebrate

richness (‘‘vertebrate richness’’) per bioregion in three different

ways: Total, which includes every vertebrate species found within

each bioregion; Resident, which only counts species in the bioregion

with the largest proportion of its geographic range; and Endemic,

which counts only species that are restricted to a single bioregion

(see Table S2 for complete raw data). Assigning each species only

to its dominant bioregion to eliminate pseudo-replication yields a

Resident richness pattern very similar to that of Total richness

(rS = 0.85, Table S4). For the analyses, vertebrates were divided

into ectotherms (amphibians and reptiles) and endotherms (birds

and mammals) and further separated into birds, mammals,

reptiles, and amphibians. All richness values were natural log-

transformed.

Finer Scale Species Data
Species occurrence data across grid cells were compiled from

global expert opinion range maps extracted across a 1106110 km

equal area grid in a Behrman projection. For mammals [84], and

amphibians, sources were the IUCN assessment (http://www.

iucnredlist.org). For birds, breeding distributions were compiled

from the best available sources for a given broad geographical

region or taxonomic group [85]. For reptiles, global-scale expert

range maps have not yet been compiled, and they were therefore

not included in the grid cell assemblage analyses. We excluded all

cells that were not .50% inside the selected bioregion boundaries

as described above (and shown in Figure 1). Only cells with .50%

dry land and with at least one species from each of the three

vertebrate groups were included in the analysis, resulting in 9,253

cells. For each grid cell we summarized richness of Resident species

(i.e., species were counted if they occurred in several grid cells only

within the same bioregion) and of Total species (i.e., species were

counted whether they occurred in multiple grid cells within the

same or in a different bioregion). Values were log10-transformed

before analysis. For Total species, the full database consisted of a

total of 2,966,137 grid cell records (birds 2,010,091; mammals

695,133; and amphibians 260,913).

Bioregion and Finer Scale Environmental Data
Bioregion-typical temperature estimates (Temperature) were based

on average annual temperatures calculated from the University of

East Anglia’s Climatic Research Unit gridded climatology 1961–

1990 dataset at native 10-min resolution [86]. For estimates of

bioregion-typical annual net primary productivity, we used an

average from 17 global models at a spatial resolution of 0.5 degrees

latitude-longitude [87]. Average bioregion productivity (Productiv-

ity, units grams Carbon m22 year21) was calculated from all

0.560.5 degree grid cells that predominantly fall inside a

bioregion, and summed productivity (AreaProductivity, units grams

Carbon year21) was then given by the product of this value and

bioregion Area. With bioregions defined by their typical environ-

mental conditions, we assumed average productivity characteristic

of a bioregion to have been constant through time [49,62]. Time-

integrated productivity (TimeAreaProductivity, unit grams Carbon)

was thus given as the product of Productivity and TimeArea. Values

for all bioregion predictor variables are given in Table S1. All

response and predictor variables were natural log-transformed for

analysis, except for temperature, which was 1/kT transformed

(where k is the Boltzmann constant, see [44]). We used the same

global net primary productivity dataset [87] to estimate produc-

tivity at the level of 1106110 km grid cells. First, we calculated

average grid cell productivity (NPP) across all encompassing

0.560.5 degree grid cells. Second, we normalized each grid cell by

dividing by the maximum productivity grid cell value observed in

a bioregion, resulting in a measure of proportional productivity

(PropNPP) varying from 0 to 1.

Bioregion Analyses
We performed a total of nine GLM models on the bioregion

data and used the Akaike criterion to identify those offering the

best fit [88]. Six models were given in the form of single predictors

(Temperature, Area, Productivity, AreaProductivity, TimeArea, and Time-

AreaProductivity). An additional three models were formed by the

combination of the latter three variables with Temperature. We

performed a separate set of analyses to assess the potential

additional effect of elevation range within a bioregion, but adding

this variable to any of the three two-predictor models did not

improve model fit, and thus we excluded the variable from further

consideration. Because of the strong independence of sampling

units both in terms of response (no overlap in species) and

predictor variables (by definition each bioregion is environmen-

tally highly distinct from neighboring bioregions), the usual

concerns about spatial autocorrelation affecting model results

[89,90] do not apply to this analysis, and additional spatial

regression analysis was not performed.

Finer Scale Analyses
Having established models of bioregion richness, we assessed the

success of predictions of resident bioregional richness to explain

Global Gradients in Vertebrate Diversity

PLoS Biology | www.plosbiology.org 8 March 2012 | Volume 10 | Issue 3 | e1001292



the species richness (Total and Resident, see above) of all

1106110 km grid cells within bioregions (for a conceptual

overview of the analytical steps, see Figure 3). Note that unlike

the bioregional tests described above, analyses at this scale do

double-count species. In our study we make the simplifying

assumption that diversification processes are sufficiently accounted

for at the bioregional scale. The models at the within-bioregion

scale then address the sorting of these species each into multiple

grid cells, with multiple occurrences an integral part of the signal.

We acknowledge that, depending on taxon and region, diversifi-

cation processes may still exert influence on the within-bioregion

patterns of distribution and richness, and we hope that our work

will spur further research into additional approaches that can be

integrated across all scales.

We first evaluated bioregion predicted resident richness alone (in

essence testing for a random sorting of bioregion species into finer

scale assemblages), then included bioregion Area as an additional

predictor, and finally we added estimates of grid cell NPP as a finer

scale predictor. We first performed simple GLM models with all

9,253 grid cells as sampling units, together with bioregion Resident

richness as predicted by the TimeAreaProductivity+Temperature and

AreaProductivity+Temperature models as a first predictor (BioregPred) and

bioregion Area as a second predictor (Figure 3, Table S9). In the

same GLM we then added grid cell proportional net primary

productivity (CellPropNPP, i.e., relative productivity within a

bioregion, see above) as an additional predictor. In preliminary

post hoc analyses with a number of environmental variables

CellPropNPP remained by far the strongest, in line with recent work

on within-regional richness filters that also find productivity-related

variables to be dominant [26,27]. Given the nested nature of these

analyses we focus on pseudo-r2 values (fit of observed versus

predicted) and visual examination of results in the form of partial

residual plots (Figure 3). For this first demonstration, focused on a

single variable, we did not include further analyses additionally

fitting the signal of spatial autocorrelation.

We performed a second set of analyses in an explicit mixed

effects model setting (Table S10), with bioregion as a random

effect (R library lme4, Version 0.999375-32, function lmer). As in

the GLM model, grid cell richness is first fitted by the predictions

for regional resident species richness (BioregPred, see Table 1), and

then by area of the region (Area), and grid-cell-level NPP (NPP).

Region was fitted as a random effect, and the slope and strength of

BioregPred and BioregPred+Area as fixed effects were assessed (model

formula in R: lmer (y,BioregPred+Area+(1|Bioregion)). The addi-

tional effect of grid cell NPP was then evaluated by fitting it as an

additional fixed effect with a globally constant slope (NPPconst) and

by allowing the NPP–richness relationship to vary within regions

as random slope (NPPvar) (model formula in R: lmer (y,Bior-

egPred+Area+(1|Bioregion)+(NPP|Bioregion)).

Data Deposition
The data are deposited in the Dryad Repository (http://dx.doi.

org/10.5061/dryad.45672js4).

Supporting Information

Figure S1 Bioregion independence at different taxonomic ranks.

The frequency of Jaccard similarity values is shown ([count of

shared taxa]/[count of taxa in both]) expressed in % (Jaccard *

100) for all bioregion combinations (N = 496) for different

taxonomic ranks. Results confirm high independence of bioregions

at the species and genus rank and moderate independence at

family rank. See also Table S3.

(TIF)

Figure S2 Partial residual plots for the joint effects Time-

AreaProductivity and Temperature on Resident species richness (ln-

transformed). Partial residual plots illustrate the relationship

between a predictor and the response given other predictors in

the model. Specifically, this is a plot of ri+bxi versus xi, where ri is

the ordinary residual for the i-th observation, xi is the i-th

observation, and b is the regression coefficient estimate. Colors

indicate biome membership (see Figure 1 for legend). For detailed

model results, see Table S7.

(TIF)

Figure S3 Partial residual plots for the joint effects of Time-

AreaProductivity and Temperature on Endemic species richness (ln-

transformed). Partial residual plots illustrate the relationship

between a predictor and the response given other predictors in

the model. For other details, see Figure S2.

(TIF)

Figure S4 Partial residual plots for the variation in grid cell

richness of Resident species among bioregions. In this model Resident

richness is predicted by the bioregion (TimeAreaProductivity+-
Temperature) model and bioregion current-day Area. Partial

residual plots illustrate the relationship between a predictor and

the response given other predictors in the model. Specifically, this

is a plot of ri+bxi versus xi, where ri is the ordinary residual for the

i-th observation, xi is the i-th observation, and b is the regression

coefficient estimate. Colors indicate biome membership (see

Figure 1 for color legend and Figure 3 for results without Area).

(TIF)

Table S1 List of bioregions and predictor variables in the

analysis. TimeArea and TimeAreaProductivity values are from

integration of bioregion area over 55 million years. For further

details and geographic locations, see Figure 1.

(DOC)

Table S2 Bioregion species richness values. Total: includes all

species with ranges extending into a given bioregion (many species

represented several times in different bioregions). Resident: includes

only species with the greatest portion of their range extending into

a given bioregion (each species is represented only once). Endemic:

includes only species with no portion of range extending beyond a

given bioregion. Vert., Vertebrates (Birds+Mammals+Amphi-

bians+Reptiles). Amph., Amphibians.

(DOC)

Table S3 Median Jaccard similarity (%) of bioregion composition at

three different taxonomic ranks. Jaccard similarity is given as ([count of

shared taxa]/[count of taxa in both]) expressed in % (Jaccard * 100).

For a given bioregion and taxon, values are medians from the

comparison with all 31 other regions, respectively. See also Figure S1.

(DOC)

Table S4 Spearman rank correlations among bioregion species

richness values for Total, Resident, and Endemic categories for all

vertebrates, endotherms, and ectotherms, and each vertebrate

clade separately (N = 32 bioregions). For richness definitions see

Table S2.

(DOC)

Table S5 Details regarding the ages of biomes and the sources

consulted in order to calculate the area over time for each of the

world’s bioregions.

(DOC)

Table S6 Spearman rank correlations of predictor variables

among bioregions (N = 32).

(DOC)
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Table S7 Predictors of bioregion richness for Endotherms

(mammals+birds) and Ectotherms (amphibians+reptiles) with

details on slope estimates. Species richness values and all

predictors except temperature were ln-transformed; temperature

is given as 1/kT (where k is the Boltzmann constant). For other

details see Table 1.

(DOC)

Table S8 Predictors of bioregion richness. Results for all taxa.

For other details see Table 1.

(DOC)

Table S9 Comparison of AIC values of alternative formulations

of models combining the effects of TimeArea and Productivity, and of

TimeArea, Productivity, and Temperature on bioregion species richness.

TimeArea and Productivity are either integrated into a single variable

(TimeAreaProductivity, see Figure 1), modeled additively, or modeled

as an interaction. Models with .3 units AIC larger than the model

with the smallest AIC within a group (i.e., significantly worse) are

marked in bold.

(DOC)

Table S10 Comparison of AIC values of TopoRange (log(max-

imum 2 minimum elevation) in a bioregion) as an alternative

predictor of bioregion species richness. Null model is fitting the

intercept only. The variable Area, which is correlated with

TopoRange (rSpearman = 0.58, N = 32), offers either equal or better

fit.

(DOC)

Table S11 Spearman rank correlations among Total, Resident,

and Endemic richness for different taxa across 110 km quadrants

(N = 9,253). For richness definitions, see Table S2.

(DOC)

Table S12 Prediction success (r2) of bioregion-level models of

Total and Resident richness of 110 km grid cell assemblages

(N = 9,253) based on general linear models. Grid cell richness is

first fitted by the predictions for Resident species richness

(‘‘[Bioregion] Predicted richness,’’ see Table 1), and then

additionally by Area of the bioregion, and grid-cell-level relative

productivity (CellPropProductivity, calculated as proportion of

maximum grid cell productivity in the region). Pseudo-r2 values

of observed versus fitted are listed.

(DOC)

Table S13 Prediction success of bioregion-level models of Total

and Resident richness of 110 km grid cell assemblages (N = 9,253)

based on mixed effects models. Grid cell richness is first fitted by

the predictions for Resident species richness (‘‘[Bioregion] Predicted

richness,’’ see Table 1) and then additionally by bioregion Area,

and grid-cell-level relative productivity (CellPropProductivity). Bior-

egion is fitted as a random effect, and the slope and strength of

‘‘[Bioregion] Predicted richness’’ and ‘‘[Bioregion] Predicted

richness+Area’’ as fixed effects are assessed. Pseudo-r2 values of

observed versus fitted are listed. The additional effect of grid cell

productivity was evaluated by fitting it as additional fixed effect

with a globally constant slope (CellPropProductivity) and by allowing

the relationship with richness to vary within regions as a random

slope (CellPropProductivityvar).

(DOC)
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