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Abstract

Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated

aboveground biomass (AGB) in tropical forests varies two-fold, with little consensus on the relative importance of

climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network

designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white-sand

forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5-ha plots in 74 sites

representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data

describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood

specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and

soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from

78 Mg ha�1 in white-sand forest in Peru to 605 Mg ha�1 in terra firme clay forest of French Guiana. Stand variables

including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In

contrast, soil and climate variables explained little overall variation in AGB, though they did co-vary to a limited

extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and

turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats)

supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many

larger trees with high wood density. The weak direct relationships we observed between soil and climate variables

and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be

based on remote sensing methods to map stand structure.
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Introduction

Tropical forests play a vital role in the global carbon

cycle, as they comprise approximately 40% of all carbon

estimated to be stored in terrestrial vegetation (Houghton,

2005; Malhi et al., 2006). Nevertheless, there remains a

large degree of uncertainty in these values, with total

estimates of tropical forest biomass carbon stocks ranging

from 158 to 324 Pg C (Gibbs et al., 2007). The emerging

carbon trading market has underlined the urgent need

to improve our understanding of the factors explaining

spatial variation in aboveground biomass (AGB) in

tropical forests (Gullison et al., 2007), especially given

recent escalations in carbon emissions resulting from

deforestation, degradation, fire, and drought in tro-

pical regions (Nepstad et al., 1999; Malhi et al., 2008;

Phillips et al., 2009). Yet despite some clear global and

regional patterns (Malhi et al., 2006; Lewis et al., 2009;

Slik et al., 2010), little agreement has been reached

regarding the ecological drivers for these patterns and

the extent to which they can be extrapolated to con-

struct regional planning maps (Houghton et al., 2001;

Gibbs et al., 2007).
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Three groups of explanatory factors have been pro-

posed to explain regional spatial variation of AGB in

tropical forests, but to date studies have provided little

consensus in their relative contributions (Table 1).

Among these, there appears to be concerted evidence

for consistent relationships between AGB and rainfall,

with moist, stable (short or no dry season) climates

supporting the highest biomass in Panama, the Ama-

zon, and Borneo (Chave et al., 2004; Malhi et al., 2006;

Quesada et al., 2009; Slik et al., 2010).

Less accord exists among studies examining relation-

ships between AGB of tropical forests and the physical

and chemical factors of soils. Several studies have

reported positive effects on AGB of soil fertility mea-

sures including total nitrogen (N), soil phosphorus, and

exchangeable bases (Laurance et al., 1999; DeWalt &

Chave, 2004; Paoli et al., 2008), suggesting that AGB

may be limited by soil nutrient availability. However,

other studies have reported lower biomass on more

fertile soils, with higher turnover rates of biomass

resulting in lower standing stocks (Van Schaik & Mir-

manto, 1985; Quesada et al., 2009). Paoli et al. (2008)

hypothesize that over large gradients in soil fertility, the

true relationship with AGB may be hump-shaped, but

to date this hypothesis has not been tested explicitly.

A third group of variables proposed to explain spatial

patterns in AGB comprises descriptors of forest struc-

ture and composition, which we refer to as stand

variables. Strong positive correlations may be expected

between AGB and variables used in allometric equa-

tions, including diameter, height, and wood specific

gravity (WSG) (Chave et al., 2005), in addition to metrics

of stem density and basal area (Chave et al., 2004).

Indeed, strong relationships between AGB and both

basal area and large stem density have been found

throughout several Neotropical forests (Chave et al.,

2004; DeWalt & Chave, 2004; Rutishauser et al., 2010),

and appear to explain the higher AGB estimates for

forests of Borneo where larger trees are more frequent

(Paoli et al., 2008; Slik et al., 2010). Less agreement has

been found for relationships between AGB and wood

density. Baker et al. (2004) suggested that the east–west

gradient in AGB across Amazonia could be explained in

large part by gradients of community distributions of

wood density. However, Stegen et al. (2009) found no

consistent relationship between AGB and wood density

at different spatial scales across four Neotropical

forests.

The overall lack of consensus in tests linking AGB

with environmental factors may be explained by three

limitations of studies to date, two of which arise in large

part from the difficulty of obtaining field data from

remote sites. First, few sets of plots exist for which

high-quality data are available describing climate, soil

properties, and stand variables including species iden-

tifications and WSG measures (but see Malhi et al., 2002,

2006). Second, even where these data exist, rarely do

plot networks cover broad gradients that can disentan-

gle covariation among climate, soil, forest structure, and

other biogeographical factors such as floristic composi-

tion. For most lowland terra firme habitats, the east–

west gradient in Amazonia represents a concomitant

gradient of soil fertility, dry season length, forest turn-

over, and community wood density, rendering tests of

the relative strengths of their relationships with AGB

complicated, particularly in plot networks that do not

provide replication of soil types across geographic

gradients (e.g., Quesada et al., 2009).

Finally, to date stand variables have been treated in

the same manner as other environmental descriptors,

despite the fact that they are directly or indirectly linked

with the allometric calculation of AGB. Therefore, we

suggest the most appropriate framework to under-

standing processes explaining spatial patterns in AGB

Table 1 A summary of climate, soil and stand factors observed to explain spatial variation in aboveground biomass in tropical

forests. (‘ 1 ’, positive correlation; ‘�’, negative correlation; ‘*’, contrasting reports)

Group Factor Effect References

Climate Total Precipitation 1 Malhi et al. (2006); Chave et al. (2004)

Dry season length � Malhi et al. (2006); Chave et al. (2004)

Soil Topography * Clark & Clark (2000); Ferry et al. (2010)

Texture * Paoli et al. (2008); Quesada et al. (2009)

Exchangeable bases * Laurance et al. (1999); Quesada et al. (2009)

Labile P * Paoli et al. (2008); Quesada et al. (2009)

Type * DeWalt & Chave (2004)

Stand Basal area 1 Baker et al. (2004); Malhi et al. (2006); Paoli et al. (2008)

Density of large trees 1 DeWalt & Chave (2004); Paoli et al. (2008); Rutishauser et al. (2010)

Mean Tree Height 1 Chave et al. (2005)

Mean Tree DBH 1 Nelson et al. (1999); Chave et al. (2005)

Mean Wood specific gravity * Baker et al. (2004); DeWalt & Chave (2004); Stegen et al. (2009)
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is hierarchical (Fig. 1). Higher AGB can only be

achieved by increases in some stand variable, so this

is the necessary first level of any analysis. The key

questions then become the extent to which climate

and soil explain spatial variation in AGB and the extent

to which they explain stand factors which in turn

explain spatial patterns in AGB. The response to these

questions has important practical implications for how

resources should be invested to map AGB at regional

scales. If climate and/or soil are significantly correlated

with either AGB or the variation in stand structure that

explains AGB, then spatial interpolation of these data

could be used to map AGB; if they are not, then it would

be more appropriate to invest resources in remote

sensing methods to map stand structure without inte-

grating environmental data.

In this paper, we evaluate relationships between AGB

and climate, soil and stand variables using a new plot

network we established across strong climate and soil

fertility gradients in two geographic regions of South

America. We compile data from 74 plots in Loreto, Peru,

and French Guiana that represent the three major low-

land rain forest habitat types with contrasting edaphic

environments. These three habitats are among the most

common habitats in lowland Amazonia, and each has a

distinctive flora (Wittman et al., 2006; Fine et al., 2010).

First, terra firme forests on clay-rich soils are typical of

most published studies. Here we include relatively

nutrient rich and clay-dominated soils from the Pebas

formation in Peru (Hoorn, 1993) in addition to brown

sandy soils from Pleistocene river terraces found in

Peru (Hoorn, 1993, 1994) and similar sand–silt–clay

mixtures from French Guiana (ter Steege, 2000). Second,

seasonally flooded forests include stands in which the

water table is never observed to descend below 60 cm

depth and remains at the soil surface for at least two

consecutive months each year (Baraloto et al., 2007;

Ferry et al., 2010). In Peru, these include floodplain

forests that are inundated during periods of heavy rains

(Prance, 1979). Third, white-sand forests are character-

ized by soils with high proportions of sand and little

organic material below the surface horizons. They

include forests derived from podzols in Peru (Fine et al.,

2005; Fine et al., 2010) and French Guiana (Baraloto et al.,

2005) as well as quartzites and weathered granite on the

margin of inselbergs in French Guiana. This dataset is

unique in its experimental design and its quality of data

available for climate, soil and stand descriptors, to

address the extent to which environment vs. biogeogra-

phy contribute to spatial patterns of AGB in tropical

forests. We use this design to answer three questions.

1. How does AGB vary among habitats, and are these

patterns consistent across different geographic regions?

2. Are the relationships between AGB and climate, soil

and stand descriptors consistent among habitats and

geographic regions?

3. What are the relative contributions of stand and

environmental descriptors in explaining spatial pat-

terns of AGB?

Materials and methods

Sampling design

From 2008 to 2010, we sampled 74 stands (forested areas of ca.

20 ha) representing extremes of geographic and environmental

gradients, with multiple replicates of the three broad habitat

classes described above. Within each geographic region, we

selected multiple zones (areas of several thousand hectares,

separated by at least 50 km), within which stands correspond-

ing to all three habitats were found (Fig. 2). In Loreto, Peru

these included the Allpahuayo-Mishana Reserve in the north,

the Jenaro Herrera Center of Investigation and the Matsés

Reserved Zone in the south, and the Morona river basin in the

west; in French Guiana these included the Laussat Conserva-

tion Area in the northwest, the Trinité Reserve in the south-

west, the Nouragues Reserve in the southeast, and the Petite

Montagne Tortue Conservation Area in the northeast. At each

site we established two to six sample plots within different

forest stands corresponding to each habitat, with at least 500 m

between any two plots. All stands represent lowland forest

(o500 m a.m.s.l.) with mature forest subject to natural gap-

phase dynamics.

Our plot sample method represents a further modification

of the Phillips et al. (2003) modified Gentry plots, which we

designed to improve AGB estimates. The protocol aggregates

ten 10� 50 m transects within a 2 ha area (for full details, see

Appendix S1). This modified 0.5-ha Gentry plot captures a gap

and mature phase mosaic well and reduces the risk of sam-

pling bias of a particular phase. Plot sites were placed follow-

ing substantial prospection in zones selected from topographic

Climate
Dry season length,

annual precipitation

Soil
Soil texture,

soil fertility

Stand structure

Stem density, DBH, height,

basal area, WSG

AGB

Fig. 1 A conceptual framework for studying the relationships

between aboveground biomass (AGB) and stand and environ-

mental descriptors. Previous studies have not addressed the

hierarchical nature of these relationships, which results from

the direct relationship between stand variables integrated into

allometric relationships with AGB.
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maps and satellite imagery where available. The 200� 100 m

plot perimeter was established to be as representative as

possible of the surrounding area (ca. 10–20 ha). UTM coordi-

nates of plots are available upon request.

Links between field and remote sensing estimates of AGB

can require slope correction of field estimates to a horizontal

plane (Clark & Clark, 2000). We did not correct for slope to

create plots with horizontal projection equivalent to 0.5 ha,

instead choosing to sample an actual field surface of 0.5 ha. We

did, however, measure slope variation among transects using a

hand-held clinometer. In all but four of the plots this slope was

negligible (o51). In four plots of quartzite white sand in

French Guiana, slope values varied between 151 and 271.

Within each plot, each stem was mapped and its circumfer-

ence measured to a precision of 2 mm at 1.3 m height (DBH).

For stems with irregular trunks or buttresses, circumference

was measured (and the point of measure marked with paint)

by climbing above irregularities. Tree height was estimated

visually by at least two trained persons to arrive at consensus.

Visual estimation by members of our crew has been found to

provide similar estimates as estimation by laser rangefinders

(Figure S1).

Herbarium vouchers were collected for at least one indivi-

dual of each putative morpho-species in each plot, with all

other individuals referenced to this voucher. Taxonomic

determinations are still underway; data presented in this

paper include determinations to the family level for 99.8% of

stems, to the genus level for 94.6% of stems, to sorted morpho-

species for 87.2% of stems, and matches to described species

for 65.2% of stems.

Environmental variables

We calculated climatic indices using data from Météo-France

in French Guiana and from the IIAP (Instituto de Investigacion

de Amazonia Peruana) in Peru, in the meteorological stations

nearest to each plot. In cases where weather stations were not

located within 10 km of our plots, we used the mean values

from any weather stations within a 50 km radius of the plot.

The maximum period for which comparable data was avail-

able for all sites corresponds to the period from 1998 to 2008.

Two climatic indexes were compiled: a mean annual rainfall

(hereafter ‘Rain’) and a dry season index (DSI). Rain was calcu-

lated as a calendar-year average. The DSI from these datasets

could be calculated based on daily measurements over 11 years:

we therefore calculated dry season length as the maximum

number of consecutive days in each calendar year receivin-

go10 mm of precipitation. We report DSI as the mean value over

the 11 years for which data was available from all sites.

Bulked 0–15 cm depth soil cores from each of the 10 subplots

were collected and combined into a single 500 g sample that

was dried at 25 1C to constant mass, sieved to 2 mm, and

shipped within 3 months for physical and chemical analyses

Fig. 2 Map of the Amazon region with major watersheds, illustrating zones where plots were established in Loreto, Peru and French

Guiana. Within each of the seven highlighted zones, two to six plots were established in each of three lowland habitat types – seasonally

flooded, terra firme clay, or white sand.
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(Table 2) at the University of California, Davis DANR labora-

tory (for full details on laboratory protocols, see Appendix S1).

Estimating AGB

WSG varies widely within and among both species and sites

(Patiño et al., 2009), and error associated with WSG estimation

can introduce substantial bias into AGB calculations (Sarmiento

et al., 2011). To avoid sampling error that can result from

regional database compilation (Baraloto et al., 2010b), we mea-

sured wood density directly on at least one individual of each

species in each plot from the plot network (see Appendix S1 for

full details).

We estimated the AGB of smaller trees with diameter at

1.3 m from the ground (DBH) between 2.5 and 10 cm, includ-

ing palms, from a single equation modified from the model

devised by Hughes et al. (1999) for a moist tropical forest of

South Mexico (Chave et al., 2004):

AGB ¼WSG� eð�1:9703þ2:1166�logðDBHÞÞ

WSG
:

We estimated the AGB in trees with DBH410 cm, including

palms, using allometric formulas that integrate WSG (in g cm3),

tree height (H, in m) and DBH (in cm) (Chave et al., 2005) :

AGB ¼ 0:0509�WSG�DBH2 �H:

We also calculated AGB for trees with DBH410 cm using an

allometry where height was not integrated, to evaluate any

bias that might be introduced in our estimation of height and

choice of allometry (Chave et al., 2005) :

AGB ¼WSG

� eð�1:499þ2:148�logðDBHÞþ0:207�logðDBHÞ2�0:0281�logðDBHÞ3Þ:

Estimates using the allometry without height were always

greater than those that included the height measure, and the

bias was greatest in plots with higher AGB (Figure S1). We

chose to present AGB values including height for the remain-

der of analyses in this study.

To permit eventual comparisons with other studies, we

corrected all values to a projected horizontal surface area

based on clinometers measures of slope in each plot, and we

extrapolated AGB to a per-hectare basis.

Stand variables

We defined seven stand variables describing forest structure

that have been linked to spatial variation in AGB (Table 1).

Principal among these are basal area, mean WSG by plot, mean

DBH by plot, and mean height by plot. We also included stem

density in three size classes: number of stems DBH between

2.5 and 10 cm; number of stems DBH between 10 and 30 cm,

and number of stems with DBH430 cm.

Data analysis

To study the broad patterns of regional and local variation of

AGB, two-way ANOVA was used to test for AGB differences

Table 2 Environmental and geographic variables represented by the 74 0.5-ha plots in Peru and French Guiana

Group Variable Abbreviation Mean Min. Max.

Climate Rainfall (mm yr�1) Rain 2923 2471 4421

Dry Season Index (days) DSI 22.3 15 36.8

Soil N (%) N 0.17 0.02 0.76

C (%) C 2.34 0.51 13.62

Carbon : nitrogen CN 15.1 1.94 28.7

NO3-N (ppm) NO3 6.5 0.05 55.2

Olsen P (ppm) P 4.6 0.05 28.6

K (mEq/100 g) K 0.09 0.01 0.32

Na (mEq/100 g) Na 0.05 0.01 0.21

Ca (mEq/100 g) Ca 1.24 0.01 19.06

Mg (mEq/100 g) Mg 0.44 0.02 3.72

Sand (%) Sand 58.4 5.0 99.0

Silt (%) Silt 18.9 1.0 60.0

Clay (%) Clay 22.7 0.4 69.0

Stand Basal Area (42.5 cm DBH) (m2 ha�1) BA 33.0 20.1 56.3

Stems 2.5–10 cm DBH (ha�1) Stems2.5.10 2149 780 5760

Stems 10–30 cm DBH (ha�1) Stems10.30 583 284 1376

Stems430 cm DBH (ha�1) Stems.sup30 89 12 188

Plot mean WSG WSG 0.64 0.51 0.76

Plot mean Height (m) Height 13.4 8.9 17.5

Plot mean DBH (cm) DBH 14.5 6.4 22.8

AGB AGB Stems410 cm DBH (Mg ha�1) AGBsup10 289.1 78.6 604.9

AGB Stems 2.5–10 cm DBH (Mg ha�1) AGB 2.5.10 10.4 4.4 27.7

AGB Total (Mg ha�1) AGB 299.5 105.5 614.8
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among geographic regions (n 5 2) and habitats (n 5 3), with

Tukey post-hoc tests to compare group means.

We then investigated the relationships between each envir-

onmental variables and AGB in two steps. First, we used

multiple factor analysis (MFA; Le et al., 2008) to get an over-

view of the plots and the variables describing them. MFA is a

multivariate ordination method, similar to principal compo-

nent analysis (PCA), which builds axes of highest variance for

different groups of variables (e.g., Baraloto et al., 2010a). The

advantage of MFA is that variables are separated into groups

each of which is given equal weight in the analysis. In our

study, this permitted us to separate stand variables that are

clearly related to AGB. In addition, the relative contribution of

groups with large numbers of variables is not exaggerated, as

would be the case here for soil variables. Finally, MFA allows

us to place groups of variables as illustrative to explore their

relationships in the ordination without influencing the ordina-

tion; here, we placed the AGB group as illustrative. These

analyses were conducted using the R language and environ-

ment for statistical computing version 2.11.1 (R Core Devel-

opment Team, 2009), with MFA analyses using the package

FACTOMINER (Le et al., 2008).

We used results from the MFA to choose representative

variables that represent the largest proportion of orthogonal

variation in the dataset. We then employed these variables in

two successive modeling approaches to examine the extent to

which climate and soil explain spatial variation in stand

factors, which in turn explain spatial patterns in AGB. We

chose three variables describing stand structure [basal area

(BA), stand mean DBH (DBH), and community-weighted

mean WSG]; two variables describing climate [DSI and annual

precipitation (Rain)]; and three variables describing soil prop-

erties [sand content (Sand), nitrate concentration (NO3) and

Olsen-phosphorus concentration (P)].

We first used variance partitioning by means of partial

linear regression (Legendre & Legendre, 1998) to examine

covariation in the relative contributions of stand, climate and

soil variables on AGB. From this, it appears that stand vari-

ables alone explain more than 90% of variance, but part of this

variance was shared with soil and climate factors. This led us

to estimate the importance of soil and climate variables in

predicting the forest structure descriptors which, in turn,

predict the AGB (Fig. 1). We constrained the stand descriptors

to be linear combinations of soil and climate variables, and we

used a hierarchical modeling framework to write and infer the

following model:

AGBp ¼ a0 þ a1 �dBAp þ a2 � dDBHp þ a2 � dWSGp þ eap

with ea � N(0,sa
2) and where (i) AGB is the above-ground

biomass of plot p, (ii) ai are the model coefficients and (iii)
cBA; dDBH; dWSG are, respectively, the predicted values of BA,

DBH, and WSG using:

Xp ¼b0 þ b1 �DSIp þ b2 � Rainp þ b3 �NO3p

b4 � Pp þ b5 � Sandp þ ebp
;

with eb � N(0,sb
2) and where (i) X was calculated as BA, DBH

or WSG data of plot p and (ii) bi are the model coefficients.

Parameter prior distributions were chosen to be noninfor-

mative, so that parameter estimations were driven much by

the data and less by the specified prior distributions:

ai � Nð0; 106Þ bi � Nð0; 106Þ; andsi � Gammað0:01; 0:01Þ:

Markov chain Monte Carlo simulations were performed and

Gibbs sampling (Geman & Geman, 1984) was completed in

WINBUGS 1.4 (Lunn et al., 2000). For each model, the parameter

posterior densities were obtained with 50 000 iterations after a

burning step (10 000 iterations).

Results

Geographic and environmental variability of AGB

The 74 plots in our network represent a large proportion

of the breadth of variation in climate and soil physical

and chemical factors that has been reported for lowland

forests across Amazonia (Quesada et al., 2009). The

different regional zones represent a two-fold gradient

in annual precipitation and dry season length, which

varies from nearly aseasonal forests in Loreto, Peru (16

consecutive days o10 mm) to highly seasonal forests in

eastern French Guiana (more than 35 days o10 mm)

(Table 2). Together, these sites represent three broad

classes of climate – (i) moderate precipitation

( � 2700 mm yr�1) with short dry seasons (o17 days)

(all Peru sites); (ii) moderate precipitation

( � 2500 mm yr�1) with long dry seasons (25–36 days)

(western French Guiana); and (iii) high precipitation

(43500 mm yr�1) with moderate dry seasons ( � 24 days)

(eastern French Guiana). In addition, the study sites cover

broad gradients of soil texture, soil nitrate concentration,

and soil available phosphorus (Table 2).

Across our 74 plots, AGB of stems with DBH410 cm

varied by a factor of 7.8, from a minimum of 78 Mg ha�1

in a white sand forest in northern Loreto, Peru to a

maximum of 605 Mg ha�1 in a terra firme clay forest of

the Trinité Reserve in French Guiana (Fig. 3; Table S1).

Forests in French Guiana had nearly twice the average

AGB (371 Mg ha�1) of forests in Loreto, Peru

(215 Mg ha�1). White sand forests had only about two-

thirds the AGB of terra firme and seasonally flooded

clay soil forests in both countries; this contrast was

particularly pronounced within the French Guianan

forests (Fig. 3). Seasonally flooded forests varied

remarkably in AGB values, particularly within the

French Guianan sites, and we did not detect an overall

difference in AGB between flooded and terra firme clay

forest soils (Table S1).

The contribution of stems o10 cm DBH to total AGB

was particularly pronounced in white sand forests of

both countries, where smaller stems contributed on

average about 10% of total AGB (vs. o3% in terra firme

2682 C . B A R A L O T O et al.
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clay and seasonally flooded forests; Figure S3). Never-

theless, the overall ranks of countries and habitats

remained consistent for total AGB including all stems

42.5 cm DBH (Table S1).

Stand and environmental correlates of AGB

We used MFA to examine the relationships among

climate, soil and stand factors in addition to their

relationships with AGB. Two major gradients of envir-

onmental variation were recovered, explaining 49% of

the variance in the dataset. The first MFA dimension has

strong loadings of the principal components of the

climate group and the forest stand group (Table S2).

In particular, it represents a gradient of increasing dry

season length, higher annual precipitation, and higher

stand basal area (Fig. 4a). The second dimension has

strong contributions of both stand and soil variables,

opposing infertile sandy soils with high small stem

density with fertile clay soils with larger trees (Table

S2; Fig. 4a). Mean WSG was tightly positively correlated

with soil sand content and soil C : N ratios and tended

to increase along the first dimension of climate/geogra-

phy and to decrease with increasing soil fertility

(Dimension 2). Total AGB and AGB of stems with

DBH410 cm were strongly positively correlated with

the first dimension.

Ordination of the plots (Fig. 4b) reveals a clear trend

of not only geographic separation by climate and stand

factors (Dimension 1) but also habitat separation

between white-sand vs. clay habitats by soil texture

and soil fertility (Dimension 2). Seasonally flooded

and terra firme forests do not segregate within the

clay-derived soils and can be considered a single group

relative to the environmental variables we measured.

Most stand variables showed very strong positive

relationships with AGB, confirming the ordination of

the MFA analysis (Fig. 4) and the conceptual framework

(Fig. 1). Average DBH and basal area were higher in

French Guiana than in Peru and generally lowest in

white sand forests; whereas community mean WSG was
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The upper panel shows the correlation circle with groups of soil,

climate, and stand variables; variables chosen for subsequent

analyses are presented in bold. The lower panel shows coordi-

nates of the 74 plots grouped in two geographic regions (Peru,

French Guiana) and the three habitat types (terra firme and

flooded clay forests, and white-sand forests).
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highest in white-sand forests (Fig. 5). Despite these

differences, the general relationship between these

stand variables and estimated AGB was strongly con-

gruent. Analysis of covariance revealed very strong

effects of both forest type and each stand descriptor

on AGB, and the only variation in slope was the

stronger slope in the relationship between DBH and

AGB in white sand forests of French Guiana (Fig. 5).

The strength of these relationships was confirmed by

linear model decomposition, in which 90% of spatial

variation in AGB (of 93.5% total) was explained by

stand variables alone, with two-thirds of this being

independent of soil and climate variables (Fig. 6).

Although climate and soil parameters did contribute

to explain variation in AGB, this was almost entirely

indirectly via covariation with stand parameters.

The Bayesian hierarchical model allowed us to detail

the contributions for each climate and soil variable to

the variation in stand parameters that explained spatial

variation in AGB. Climate variables contributed

strongly to the explanatory variation in all three stand

descriptors, especially basal area (Fig. 7). Soil texture

(percent sand) showed contrasting relationships, with a

strong positive relationship with the explanatory varia-

tion in WSG and a strong negative relationship with the

explanatory variation in stand mean DBH. Soil phos-

phorus showed negative relationships with the expla-

natory variation in all three stand descriptors, especially

basal area and DBH.

Discussion

Our study provides two important advances to under-

standing spatial patterns of AGB in Amazonian forests.

First, we present clear evidence of contrasting patterns

of AGB among broad forest habitat types, in addition to

confirming the strong east–west geographic gradient

that has been previously described (Fig. 3). Second,
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Fig. 5 Selected relationships between aboveground biomass

(AGB) and stand variables. Each panel shows results for 74 plots

grouped by geographic region [Peru (open), French Guiana

(filled)] and habitat type [white sand (triangles) vs. terra firme

and flooded clay forests (circles)]. Shown are slopes from ana-

lyses of covariance testing the interaction between forest type

and stand variable on AGB.
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necessarily sum to 1 (Legendre & Legendre, 1998).
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despite fine-scale characterization of soil and climate

across these broad gradients, we did not uncover strong

relationships between any soil or climate variable and

AGB (Table 2). Rather, we found compelling evidence

for regional and habitat patterns in stand variables

describing forest structure and composition (Fig. 4) that

were only partly explained by spatial variation in

climate and soil physical or chemical properties (Fig.

6). The strength of the arrows in Fig. 1 could be

modified to reflect these relationships with a strong

arrow between stand variables and AGB; weak arrows

between climate and especially soil variables and stand

variables; and very weak arrows between climate and

soil variables and AGB. Below we discuss these groups

of variables in turn and the implications for under-

standing and modeling regional patterns of AGB in

Amazonian forests.

Stand influence on AGB

Our analyses underline the paramount contribution of

stand variables to spatial variation in AGB that has been

found in other analyses, and especially the role of larger

trees (Chave et al., 2004; DeWalt & Chave, 2004;

Rutishauser et al., 2010). This result is not surprising

because diameter and height are used to estimate

individual tree AGB, as illustrated by the strong linear

relation between AGB and basal area (Fig. 5). Large

trees (430 cm DBH) represented 11.4% and 16.7% of

Peru and French Guiana tree samples, respectively.

French Guianan forests are also characterized by higher

total stem densities, especially in terra firme and sea-

sonally flooded forests (Fig. 4); given that these forests

also tend to have larger trees, they are characterized by

a higher basal area and higher AGB (Fig. 5).

Our study also highlights the importance of smaller

stems to carbon stocks, especially in many white-sand

habitats. Overall, AGB of stems with DBH between 2.5

and 10 cm varied by a factor of more than five (Table 2),

accounting for o1% in some French Guianan terra

firme forests to more than 25% of total AGB in a

Peruvian white-sand forest (Figure S3). This result con-

trasts with reports that small trees (o10 cm DBH)

account for only 3% of aboveground biomass in French
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Guiana (e.g., Lescure et al., 1983). Eighty percent of

biomass estimates in lowland tropical forests are based

on measurements of trees 410 cm DBH (Keeling &

Phillips, 2007). Our research shows that we should also

take small trees into consideration in biomass estima-

tions, particularly in edaphically extreme habitats such

as white-sand forests. One reason that most studies may

not include small trees is the time required for adequate

measurement. We recommend our sampling protocol as

particularly efficient to estimate rapidly the total AGB,

with an average of 8 person-days to complete field

sampling per plot. Still, we note that the allometries

for these stems may result in overestimates because

they do not include height (cf. Fig. S2), and it would be

valuable to revise allometric relationships for smaller

stems in future studies.

Baker et al. (2004) demonstrate significant differences

in stand level WSG for mature forests within Amazonia,

with eastern and central forests having 16% denser

wood than their western counterparts. In our study,

this geographic effect is confirmed, with French Guia-

nan forests having a higher average WSG than Peruvian

forests (ANOVA Po0.01). However, this effect was less

than half as strong as the effect of habitat (ANOVA

Po0.001), with white-sand forests having nearly 20%

higher average wood density than terra firme and

seasonally flooded forests in both countries (Fig. 5).

Across all forests, these patterns explain the weaker

positive correlation between WSG and AGB than has

been reported in other studies across multiple Amazo-

nian plots (Baker et al., 2004; Quesada et al., 2009). For

example, the highest community values of WSG were

found in French Guianan white-sand forests, many of

which have very low AGB. Moreover, some of the

French Guianan terra firme plots with the highest

AGB have among the lowest community WSG values

(Fig. 5). Although we concur with Baker et al. (2004) that

patterns of species composition across the Amazon may

contribute to differences in AGB because of spatial

gradients in community wood density (Ter Steege

et al., 2006), we caution against generalizations of posi-

tive correlations between WSG and AGB, as this rela-

tionship may not be valid across all site comparisons

(Stegen et al. 2009).

Climate, stand parameters and AGB

Few studies have attempted to relate climate with AGB,

perhaps because of limited precision in climate data

across tropical forest regions, especially adjacent to

permanent vegetation plots. Higher rainfall and/or

shorter dry seasons have been linked to higher AGB

across Amazonian forests (Malhi et al., 2006; Quesada

et al., 2009) and the Isthmus of Panama (Chave et al.,

2004). However, these studies could not disentangle the

confounding effects of soil and stand composition from

those of climate because tropical forests with the com-

bination of high soil fertility, low precipitation and

strong seasonality are rare (Quesada et al., 2009). Our

study sites included broad gradients of soil fertility and

climate regimes (Table 2), and our statistical approach

allowed us to examine the covariation among these

factors.

We found very strong effects of dry season length on

the stand characteristics that explained spatial variation

in AGB (Fig. 7), but we note that our plot network does

not cover geographic intermediates in Brazil (Fig. 2).

Quesada et al. (2009) showed that significant correla-

tions between dry season length and AGB dissolved

after correcting for spatial autocorrelation among 59 of

the RAINFOR terra firme plots. Further investigation

combining these databases will be necessary to deter-

mine the relative contribution of climatic variables to

spatial variation in AGB.

Soil, stand parameters and AGB

Confounding spatial effects similar to those we found

with climate can impede analyses of relationships be-

tween AGB and soil parameters (Quesada et al., 2009),

and this may explain in part the contrasting results

reported by previous studies across different spatial

scales (Laurance et al., 1999; DeWalt & Chave, 2004;

Paoli et al., 2008; Quesada et al., 2009). One of the

strengths of our study is the replicated sampling of

contrasting soil types at different spatial scales, which

reveals several consistent patterns across geographic

regions and habitats. Across the entire dataset, as well

as within habitats and countries, AGB decreased with

increasing soil fertility as defined by Olsen-extracted

phosphorus and correlated exchangeable cations (Fig.

4a) because of strong negative correlations between

these soil chemical parameters and tree size and basal

area (Fig. 7). Nevertheless, nitrate was positively corre-

lated with tree size, perhaps due to accumulation of N

over time in the older forests of French Guiana. Overall

our results are consistent with the idea that forests on

less-weathered soils have higher turnover rates which

do not permit accumulation of high AGB, whereas

forests on weathered soils may accumulate both stand-

ing biomass and soil nitrogen (Russo et al., 2005; Ques-

ada et al., 2009).

Conclusions

Our study has strong implications both for understand-

ing the factors explaining spatial variation in AGB in

lowland tropical forests and for modeling AGB in the
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Amazon. We provide sobering news for modelers seek-

ing to use appropriate ‘soil and climate functions’ to

refine estimates of AGB in lowland tropical forests of

South America. Unlike in the forests of Borneo (Paoli

et al., 2008; Slik et al., 2010), soil appears to exert

relatively weak control over AGB across the forests

studied here; and climate variables were also poorly

correlated with AGB (Fig. 6). On the other hand, our

study shows how stand variables may prove to be

valuable tools to estimate AGB not only within terra

firme forests across geographic regions, but also among

contrasting habitats both within and among geographic

regions (Fig. 5). Stand variables, especially canopy

height, can be derived from remote sensing devices

whether radar, lidar or optical (Dubayah et al., 2010;

Goetz et al., 2009) and therefore can be used as valuable

predictive variables to map and monitor forest biomass

over large areas.

The weak relationships we observed between AGB

and soil and climate (Fig. 6), despite fine-scale charac-

terization across broad gradients of soil and climate,

confirms previous results for little soil nutrient control

over AGB in Neotropical forests (DeWalt & Chave, 2004;

Quesada et al., 2009). These results are generally consis-

tent with the positive feedback hypothesis (van Schaik &

Mirmanto, 1985; Quesada et al., 2009), which contrasts

rich soils with high turnover that support fast-growing

species with smaller maximum sizes and lower wood

density, vs. less fertile soils with lower turnover that

support the accumulation of many, larger trees with

denser wood. The model works well for both geographic

contrasts (Peru vs. French Guiana) and for contrasts

between seasonally flooded forests (high turnover) vs.

terra firme forests (lower turnover) in the regions stu-

died here (e.g., Ferry et al., 2010) (Fig. 7). We underline

the exception reported here for white-sand forests, in

which strong oligotrophy and drought stress may favor

investment in physical and chemical defenses (Janzen,

1974; Fine et al., 2006) and traits reducing cavitation risk

such as high wood density and slow growth (Chave

et al., 2009), resulting in the lowest AGB values ever

reported (Fig. 3). The integration of forest dynamics data

with the intensive measures and plot network design of

our study, in collaboration with other plot networks, will

permit refined tests of the positive feedback hypothesis

in Amazonian forests.
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and Nouragues Reserves (Mael Dewynter, ONF) and the Nour-
agues Research Station (Patrick Chatelet and Philippe Gaucher,
CNRS) for their assistance in organizing field work. Research
was supported by a collaborative NSF DEB-0743103/0743800 to
CB and PVAF; and by an INRA Package grant to CB. Climate
data in French Guiana were generously provided by Météo
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