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Abstract
1.	 The forests of Amazonia are among the most biodiverse on Earth, yet accurately 

quantifying how species composition varies through space (i.e., beta‐diversity) re-
mains a significant challenge. Here, we use high‐fidelity airborne imaging spec-
troscopy from the Carnegie Airborne Observatory to quantify a key component of 
beta‐diversity, the distance decay in species similarity through space, across three 
landscapes in Northern Peru. We then compared our derived distance decay rela-
tionships to theoretical expectations obtained from a Poisson Cluster Process, 
known to match well with empirical distance decay relationships at local scales.

2.	 We used an unsupervised machine learning approach to estimate spatial turnover 
in species composition from the imaging spectroscopy data. We first validated this 
approach across two landscapes using an independent dataset of forest composi-
tion in 49 forest census plots (0.1–1.5 ha). We then applied our approach to three 
landscapes, which together represented terra firme clay forest, seasonally flooded 
forest and white‐sand forest. We finally used our approach to quantify landscape‐
scale distance decay relationships and compared these with theoretical distance 
decay relationships derived from a Poisson Cluster Process.

3.	 We found a significant correlation of similarity metrics between spectral data and 
forest plot data, suggesting that beta‐diversity within and among forest types can 
be accurately estimated from airborne spectroscopic data using our unsupervised 
approach. We also found that estimated distance decay in species similarity varied 
among forest types, with seasonally flooded forests showing stronger distance 
decay than white‐sand and terra firme forests. Finally, we demonstrated that dis-
tance decay relationships derived from the theoretical Poisson Cluster Process 
compare poorly with our empirical relationships.
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1  | INTRODUC TION

The forests of Amazonia are highly diverse, supporting as many 
as 16,000 tree species (ter Steege et al., 2013). The importance 
of this diversity, beyond its intrinsic value as a natural wonder, 
is increasingly well documented, for example, by underpinning 
key biogeochemical cycles and determining the resilience of 
Amazonian forests to climate change (Sakschewski et al., 2016). 
Despite this recognition of the importance of diversity, accurately 
quantifying how species composition varies through space (i.e., 
beta‐diversity) in Amazonia remains a significant challenge given 
the remoteness of the largest tropical forest on Earth. Over re-
cent years large networks of forest plots (e.g., RAINFOR, ATDN 
and CTFS) have provided invaluable insight into the spatial ecol-
ogy of Amazon forests (Duque et al., 2017; Phillips et al., 2004; 
ter Steege et al., 2006). However, even summed together these 
networks represent only ~2,000 ha of forest, with many plots in 
localized clusters. Therefore, using plot data alone to assess con-
tinuous spatial phenomena such as turnover in species composi-
tion represents a significant current limitation to understanding 
tropical biodiversity.

An alternative, yet complementary, approach to quantifying 
biodiversity is through the use of remotely sensed data integrated 
with existing plot data. Such an approach enables the acquisi-
tion of contiguous data over vast swaths of forests irrespective 
of accessibility, potentially transforming the power of an entirely 
ground‐based approach. Multispectral data from satellite‐based 
remote sensing, in conjunction with plot data, have been used 
successfully to broadly classify different forest types (Draper 
et al., 2014; Salovaara, Thessler, Malik, & Tuomisto, 2005) and 
to provide general assessment of species turnover in Amazonia 
(Thessler, 2008; Tuomisto, Poulsen, et al., 2003). However, current 
satellite based multispectral sensors (e.g., Landsat) lack the spa-
tial and spectral resolution required to sufficiently differentiate 
the high species‐level diversity occurring within tropical forests 
(Rocchini et al., 2016; Rocchini, 2007a, 2007b ). Recent advances 

in high‐fidelity, laser‐guided imaging spectroscopy present a viable 
solution, and have been used successfully to estimate beta‐diver-
sity in Neotropical forests (Féret & Asner, 2014a, 2014b ; Somers 
et al., 2015).

A key component of beta‐diversity is the variation in spe-
cies composition as a function of geographic distance (hereafter 
referred to as distance decay). Distance decay is a particularly 
useful concept as it allows for an understanding of the relative 
importance of different processes that may determine patterns 
of beta‐diversity, such as environmental filtering and dispersal 
limitation (Soininen, McDonald, & Hillebrand, 2007; Tuomisto, 
Ruokolainen, & Yli‐Halla, 2003). Understanding variation in dis-
tance decay relationships among different landscapes and for-
est types also has important implications for designing effective 
conservation strategies (Socolar, Gilroy, Kunin, & Edwards, 2016). 
For example, the gradient of distance decay can help to under-
stand if conserving species in a given landscape or forest type 
will be maximized by many small or few large protected areas 
(Nekola & White, 1999). Furthermore, distance decay relation-
ships can be used to formally test theoretical predictions of com-
munity assembly, for example from neutral theory and sampling 
area theory (Chave & Leigh, 2002; Condit et al., 2002; Hubbell, 
2001; Morlon et al., 2008).

One particularly significant theoretical model suggests that 
distance decay relationships are defined by the spatial aggregation 
of tree species, which can be characterized by a Poisson Cluster 
Process (hereafter PCP) (Morlon et al., 2008; Plotkin et al., 2000). 
This model is useful because it correctly recognizes that tree spe-
cies are spatially aggregated (Condit et al., 2000), but does not 
attempt to ascribe a particular community assembly mechanism. 
Furthermore, this model has accurately characterized species area 
curves, and distance decay relationships in a number of tropical 
forests (Morlon et al., 2008; Plotkin et al., 2000). Importantly, while 
this model has found relatively good agreement at small scales 
(≤50 ha), it has not been possible to test this model at larger spatial 
scales. A key limitation of the PCP approach is that it assumes a 

4.	 Synthesis. Our results demonstrate the efficacy of using high‐fidelity imaging spec-
troscopy to estimate beta‐diversity and continuous distance decay in lowland 
tropical forests. Furthermore, our findings suggest that distance decay relation-
ships vary substantially among forest types, which has important implications for 
conserving these valuable ecosystems. Finally, we demonstrate that a theoretical 
Poisson Cluster Process poorly predicts distance decay in species similarity as 
conspecific aggregation occurs across a range of nested scales within larger 
landscapes.
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single scale of aggregation; in this paper, we test the validity of this 
assumption at larger spatial scales (>1,000 ha).

Within western Amazonia, several plot‐based studies have 
examined distance decay relationships in tree communities, and 
most of these studies find an initial rapid decay in species simi-
larity over the first few kilometres followed by a far more gradual 
decay over greater distances (Condit et al., 2002; Duque et al., 
2009; Tuomisto, Poulsen, et al., 2003). However, this relation-
ship varies substantially with the spatial scale of study (Morlon 
et al., 2008; Phillips, Martínez, et al., 2003; Phillips, Vargas, et 
al., 2003; Tuomisto, Poulsen, et al., 2003), forest type (Draper, 
Honorio Coronado, et al., 2018), underlying geology (Phillips, 
Martínez, et al., 2003; Phillips, Vargas, et al., 2003), and taxo-
nomic group (Kristiansen et al., 2012; Tuomisto, Poulsen, et al., 
2003). Importantly, all of these plot‐based studies have been data 
limited, either using a relatively small number of plots (typically 
<50 ha) to interpolate distance decay over tens to hundreds of 
kilometres (Condit et al., 2002; Tuomisto, Poulsen, et al., 2003), or 
using spatially continuous data to investigate distance decay over 
small spatial scales (≤50 ha) (May, Wiegand, Lehmann, & Huth, 
2016; Morlon et al., 2008).

Here, we apply a sequence of unsupervised machine learning 
techniques (Féret & Asner, 2014b) to continuous high‐fidelity spec-
tral datasets to quantify contiguous beta‐diversity and associated 
distance decay relationships at a landscape scale (>1,000 ha) across 
three lowland landscapes in Amazonian Peru. At each of these land-
scapes we apply our method to one of three distinct forest types: 
white‐sand forest, seasonally flooded forest and terra firme clay for-
est. We also use an extensive network of 49 forest census plots across 
two landscapes to thoroughly validate our approach and to answer 
the following questions.

1.	 Does high spatial resolution imaging spectroscopy accurately 
predict turnover in tree species composition across different 
forest types in lowland Amazonia?

2.	 How does distance decay in tree species composition vary across 
different forest types in lowland Amazonia?

3.	 How well does a theoretical PCP predict distance decay in tree 
species composition across a range of forest types in lowland 
Amazonia?

2  | MATERIAL S AND METHODS

2.1 | Study landscapes

Three distinct landscapes were used in this study: Allpahuayo 
Mishana, Jenaro Herrera, and Quebrada Braga. These landscapes 
are all located in the department of Loreto, Peru (Figure 1), and 
were selected because they harbour at least one of the three most 
common forest types encountered across western Amazonia: terra 
firme clay forest, seasonally flooded forest, and white‐sand forests 
(Baraloto et al., 2011). The first landscape, Allpahuayo Mishana, is 
a national reserve located close to the city of Iquitos that contain 
a mosaic of terra firme clay and white‐sand forest (Fine, García‐
Villacorta, Pitman, Mesones, & Kembel, 2010; García Villacorta, 
Ahuite Reátegui, & Olórtegui Zumaeta, 2003). These white‐sand 
forests have exceptionally nutrient‐poor sandy soils of cratonic ori-
gin, and harbour numerous endemic tree species (Fine et al., 2010). 
The second landscape, Jenaro Herrera, is a centre of research of 
the Instituto de Investigaciones de la Amazonía Peruana. Jenaro 
Herrera is made up primarily of terra firme forest, although there are 

F I G U R E  1   Maps of the three study landscapes: Allpahuayo Mishana (AM), Quebrada Braga (QB), and Jenaro Herrera (JH). Inset maps A and 
B show the immediate surroundings of the study landscapes as well as the CAO LiDAR‐derived digital terrain models for each landscape. The 
third inset map shows the wider study region (dashed white box) in the context of Peru [Colour figure can be viewed at wileyonlinelibrary.com]
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some small patches of white‐sand forest, seasonally flooded forest, 
and palm swamp forest (Honorio Coronado et al., 2009; Honorio 
Coronado, Pennington, Freitas, Nebel, & Baker, 2008). Finally, the 
Quebrada Braga landscape is located south of Jenaro Herrera, and is 
surrounded by the Ucayali river on three sides, these low‐lying for-
ests are inundated seasonally with nutrient‐rich white water (Nebel 
et al., 2001).

2.2 | Airborne data

We used the Carnegie Airborne Observatory (CAO) Airborne 
Taxonomic Mapping System to obtain fused high‐fidelity imaging 
spectroscopy and Light Detection and Ranging (LiDAR) data for all 
three of our landscapes (Asner et al., 2012). CAO flights took place 
between June and September 2012 at an altitude of approximately 
2,000 m above ground level, with an average flight speed of 60 m/s, 
and a mapping swath of ~1.2 km. Spectral radiance data were col-
lected between 380 and 2,510 nm at 5‐nm increments (Asner et al., 
2012). These measurements were subsequently resampled to 10‐nm 
resolution, resulting in 214 contiguous spectral bands at a ground‐
level resolution (pixel size) of 2 m. LiDAR data were obtained from 
a dual‐laser waveform scanner that was operated at 200 kHz, with 
a 17º scan half‐angle from nadir, yielding a point density of 4 laser 
shots/m2 (up to 16 returns/m2). LiDAR data were used to produce 
maps of tree canopy height and ground surface at 1‐m spatial resolu-
tion. Spectral and LiDAR data were precisely geo‐located using an 
embedded high‐resolution Global Positioning System (GPS)‐Inertial 
Measurement Unit.

The spectral radiance data were atmospherically corrected to 
apparent surface reflectance with the ACORN‐5 model (Imspec LLC, 
Glendale, CA USA). Images were then processed to exclude pixels 
that were not fully sunlit (i.e., shaded by another tree), covered by 
cloud, or represented a nonforested land surface. Shade masks were 
built using LiDAR‐derived ray tracing models (Asner et al., 2007), 
clouds were masked manually, and nonforested land surfaces were 
identified using a LiDAR‐derived map of tree canopy height where 
pixels with a canopy <3 m were considered nonforested. In addition, 
spectral bands that contained sampling noise (wavelengths <400 nm 
and >2,500 nm) or that were dominated by atmospheric water va-
pour (wavelengths 1,350–1,480 nm and 1,780–2,032 nm), were not 
used in this analysis.

2.3 | Estimating beta‐diversity from spectral data

To estimate beta‐diversity from spectral data, we used the “spectral 
species distribution” (SSD) approach, building on the previous work 
of Féret and Asner (2014a, 2014b ) and more generally on the foun-
dations of the spectral variation hypothesis (Palmer, Earls, Hoagland, 
White, & Wohlgemuth, 2002). Our approach assumes that the spec-
tral properties of a landscape vary with species composition, and 
therefore we are able to use variation in spectral composition as 
a proxy for variation in species composition. At each of the three 
sites, we independently applied a seven‐step analysis procedure 

to generate our mapped estimates of tree species compositional 
change as follows.

1.	 We performed a principal component analysis (PCA) on our 
processed spectral image in order to reduce the high dimen-
sionality of the spectral data and to isolate and remove sampling 
artefacts such as cross‐track brightness gradients.

2.	 We manually selected components associated with biological gra-
dients by visually examining the first 35 components, and remov-
ing any that showed obvious artefacts, such as clear striping. This 
left four to eight useful components that were used in steps 3–7. 
At all landscapes the first three components were always selected 
and the together the components represented >60% of the 
variance.

3.	 We applied k‐means clustering to the selected components, clus-
tering each pixel into one of 50 possible “spectral species.” 
Spectral species being simply clusters of pixels that have similar 
reflectance values, which may, but equally may not, trace onto 
actual species. This process reduces the multilayer image of PCs 
into a single‐layer image containing the spatial distribution of 
spectral species. Due to the large size of the dataset, k‐means was 
applied using the “mini‐batch k‐means” function in the Python 
package scikit learn, which provides near‐equivalent performance 
at rapid computational speed (Pedregosa et al., 2011). Minibatches 
of 10,000 pixels were used, each with 20 random starts.

4.	 We then divided the resulting SSD image into 1‐ha mapping ker-
nels. Kernels in which >66% of pixels corresponded to either 
shade, nonvegetated ground, or were clouded, were excluded 
from all further analysis. This led to a ~20% loss of area from each 
landscape (Table 1).

5.	 We then converted the image into a spectral species abundance 
matrix where each row corresponded to an individual kernel and 
each column to a spectral species, from which we calculated a 
Bray–Curtis distance matrix.

6.	 We then applied nonmetric multidimensional scaling (NMDS) to 
the distance matrix in order to extract the most important compo-
sitional gradients in the spectral species data. The NMDS was op-
timized for three axes and run for 30 iterations.

7.	 Finally, we reprojected the three NMDS axis scores into a raster 
format so that spatial variation in spectral species composition 
could be visualized.

The PCA and k‐means analysis were undertaken using the 
Python package Sci‐kit learn (Pedregosa et al., 2011). All beta‐diver-
sity analyses (steps 5 and 6) were performed in the r statistical envi-
ronment using the Vegan package (Oksanen et al., 2013).

2.4 | Plot inventory beta‐diversity estimates

To validate our approach, we compared our estimates of beta‐diver-
sity derived from spectral data to measured beta‐diversity obtained 
from inventory plot data at Allpahuayo Mishana and Jenaro Herrera. 
Our plot dataset consisted of 37 existing forest inventory plots 
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distributed across Allpahuayo Mishana in white‐sand and terra firme 
forest types, and 12 forest plots distributed across Jenaro Herrera 
in terra firme, white‐sand, and palm swamp forest types (Figure 2). 
Plots varied in size from 0.1 to 1.5 ha, and five different sampling 
protocols were used as described below.

We used 12 large rectangular permanent sampling plots 
(0.5–1.5 ha), in which all tree stems with a diameter greater than 
10 cm have been tagged and identified. Seven of these rectangu-
lar plots were 1 ha in size and belong to the RAINFOR Network, 
two of these plots were 1.5 ha in size (Martinez & Phillips, 2000; 
Peacock, Baker, Lewis, Lopez‐Gonzalez, & Phillips, 2007). We also 
used three rectangular 0.5‐ha plots in which all stems greater than 
5 cm have been identified (Honorio Coronado et al., 2008). We 
further used 16 small 0.1‐ha plots, in which all stems greater than 
2.5 cm in diameter were identified. Six of these 0.1‐ha plots were 
“Gentry” plots consisting of ten 2 × 50 m intersecting transects 
(Gentry, 1982; Phillips, Martínez, et al., 2003; Phillips, Vargas, 
et al., 2003). These six Gentry plots, alongside the seven 1‐ha 
RAINFOR plots were downloaded from the ForestPlots.net on-
line repository (Lopez‐Gonzalez, Lewis, Burkitt, & Phillips, 2011; 
Lopez‐Gonzalez, Lewis, Burkitt, Baker, & Phillips, 2009). The 10 
remaining 0.1‐ha plots were rectangular 20 × 50 m plots (Zárate, 
Amasifuen, & Flores, 2006). We used four 0.5 ha modified Gentry 
plots, within which all stems greater than 2.5 cm in diameter were 

identified (Baraloto et al., 2011). The remaining 14 plots were cir-
cular plots in which all species greater than 10 cm dbh were iden-
tified (Baldeck, Tupayachi, Sinca, Jaramillo, & Asner, 2016); two of 
these circular plots were 0.25 ha and 12 were 0.14 ha. Summary 
details of the inventory plot dataset are given in Table 2, and full 
details of all plots are given in Table S1.

The GPS coordinates were taken in the centre of each plot to 
determine its position within the landscape. There are significant 
uncertainties associated with using a GPS underneath a forest 
canopy, particularly for smaller inventory plots. Our approach 
partially mitigates these uncertainties as our aim is to align these 
plots with spectral species composition estimates at a 1‐ha scale, 
and therefore, GPS locations need only be located in the correct 
1 ha kernel. Ultimately, we removed five plots from this aggregate 
dataset in Allpahuayo Mishana (four 0.1 ha and one 0.5 ha), that 
were located <10 m from a kernel boundary between white‐sand 
forest and terra firme forest according to our spectrally derived 
map of estimated beta‐diversity. As these plots were larger than 
10 m in any dimension, there is a high likelihood that much of the 
area of these plots was situated in an incorrect kernel. These five 
boundary plots introduced additional variation in the relationship, 
as shown in Figure 3.

Because morpho‐species were not standardized across datasets, 
it was necessary to exclude all individuals not identified to species 

Allpahuayo Mishana Jenaro Herrera Quebrada Braga

Forest type White‐sand forest Terra firme 
forest

Seasonally 
flooded forest

Total landscape area (ha) 4,540 4,910 3,107

Area of forest type (ha) 794 2,309 2,522

No. pairwise 
comparisons

315,218 2,665,740 2,412,585

TA B L E  1   Summary of the spectral data 
used to estimate species composition for 
the three study landscapes

F I G U R E  2   Distribution of field plots 
across the Allpahuayo Mishana landscape 
(a) and the Jenaro Herrera landscape (b). 
Blue circles represent plots in white‐sand 
forest, green circles represent terra firme 
forest plots and cyan represent palm 
swamp forest plots. The backdrop of 
the map shows the first NMDS axis of 
the estimated species composition of 
Allpahuayo Mishana and the second NMDS 
axis of the estimated species composition 
of Jenaro Herrera, derived from airborne 
imaging spectroscopy [Colour figure can be 
viewed at wileyonlinelibrary.com]
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level from the dataset before calculating beta‐diversity. These exclu-
sions led to a loss of 5%–20% of individuals, which is likely to slightly 
increase the similarity among plots. However, patterns of beta‐di-
versity among Amazonian tree census plots have been shown to be 
generally robust to the exclusion of similar proportions of morpho‐
species (Pos et al., 2014).

Given that estimates of beta‐diversity are sensitive to the num-
ber of individuals per plot, and that our dataset was made up of plots 
of different sizes (and different numbers of individuals), it was nec-
essary to standardize our plot dataset by stem number before cal-
culating beta‐diversity. We did this by using a bootstrap resampling 

process. This process consisted of first establishing the minimum 
number of individuals in any plot, in this case 65, and then sampling 
(without replacement) 65 individuals from each plot at random. A 
Bray–Curtis distance matrix was then constructed using this sub-
sample of 65 individuals per plot. Using this distance matrix, NMDS 
ordinations were performed. NMDS axis scores were then extracted 
for each plot. This process was then repeated 1,000 times with a 
different set of 65 individuals per plot in order to develop confidence 
intervals for NMDS axis scores. Finally, we were able to compare 
NMDS axis scores derived from this plot inventory data with the cor-
responding NMDS axis scores derived from the spectral data.

TA B L E  2   Summary of field plot inventory data used to calibrate spectral data at Allpahuayo Mishana (AM) and Jenaro Herrera (JH)

Plot type Large rectangular Small rectangular Small circular Large “Gentry” Small “Gentry”

Reference Martinez and Phillips (2000); 
Honorio Coronado et al. (2008)

Zárate et al. 
(2006)

Baldeck et al. 
(2016)

Baraloto et al. 
(2011)

Phillips, Martínez, et al. (2003); 
Phillips, Vargas, et al. (2003)

Site AM & JH AM AM AM & JH AM

No. plots 15 10 14 4 6

Plot area (ha) 0.5–1.5 0.1 0.1–0.25 0.5 0.1

Min. dap (cm) 5/10 2.5 10 2.5 2.5

Mean individuals 
(per plot)

663 358 88 242 260

Mean identified 
species (per 
plot)

139 89 33 78 79

F I G U R E  3   The relationship between spectrally derived estimates of tree species compositional turnover (represented by the first 
axis of the NMDS ordination of spectral species) and measured tree species compositional turnover (represented by the first axis of the 
NMDS ordination of tree species) at Allpahuayo Mishana (a) and Jenaro Herrera (b). Colours represent different forest types: Dark blue 
(white‐sand forests); green (terra firme clay forests); cyan (palm swamp forests, grey symbols were those excluded from the analysis are they 
were <10 m from a border between forest types. Error bars signify 95% confidence intervals around floristic NMDS axis scores. Symbol 
shape corresponds to size of forest census plots, square (1–1.5 ha), triangle (0.5 ha), and circle (0.1–0.25 ha). Black lines represent linear 
regressions, both regressions were highly significant (p ≤ 0.001) [Colour figure can be viewed at wileyonlinelibrary.com]

R2 = 0.85 R2 = 0.68(a) (b)
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2.5 | Estimating spectral distance decay

To estimate the distance decay in species composition from spectral 
data within forest types, it was first necessary to isolate pixels that 
correspond to the forest type of interest. At Allpahuayo Mishana, 
the target forest type was white‐sand forest. Using our validation 
data, we demonstrated that at this site white‐sand forests can be 
readily separated from terra firme forests based on spectral composi-
tion (Figures 2 and 3). Therefore, pixels with a value of greater than 
0.3 on the first NMDS axis were classified as white‐sand forest.

At Jenaro Herrera, the target forest type was terra firme forest. 
We first used our spectral data to exclude small patches of white‐
sand forest from our analysis; to do this, we excluded all pixels with a 
value of greater than 0.2 on the second NMDS axis as this was shown 
to represent white‐sand forests in the validation data (Figure 3). We 
then used the LiDAR‐derived DEM to separate pixels of seasonally 
flooded forest from terra firme forest. Kernels with a mean elevation 
greater than 118 m were considered to be terra firme forest.

At Quebrada Braga, the target forest type was seasonally flooded 
forest. We used our LiDAR‐derived DEM to isolate those forests that 
are seasonally flooded from those that are not. We were able to use 
existing plot data to identify the elevation of seasonally flooded for-
ests (Kvist & Nebel, 2001; Nebel et al., 2001). All kernels that had 
a mean elevation of 113–117 m a.s.l. were deemed to be seasonally 
flooded. As this landscape is surrounded on three sides by a white‐
water river, we assume that seasonal flooding provides uniformly high 
nutrient deposition and that there are no further edaphic gradients.

To visualize the distance decay across each landscape, we calcu-
lated the mean similarity (inverse Bray–Curtis) for all paired plots within 
bins of 100 m, (i.e., the mean similarity between plots located 0–100 m 
apart, 100–200 m apart etc.). We have presented the ensemble mean 
and standard deviation with each distance bin and do not assume inde-
pendence among these pairwise distances. Additionally, we calculated 
the first‐order derivative of similarity every 100 m across each land-
scape. We used a LOESS smoothing function (span = 0.35), to demon-
strate how the derivative varies with distance across each landscape.

2.6 | Theoretical distance decay

To assess the extent to which our empirical spectral distance decay 
relationships could be reproduced by a PCP, we applied the theoreti-
cal framework outlined by Morlon et al. (2008). Because we applied 
this approach to 50 spectral species rather than hundreds or thou-
sands of species, it was essential that our measure of similarity was 
calculated using abundance rather than occurrence data. Therefore, 
we did not fit the general formula supplied by Morlon et al. (2008) 
which had been developed to using the Sorensen index. Instead, we 
simulated maps of SSDs with a PCP, which we parameterized using 
fits of Ripley’s K curves to our spectral species maps. Subsequently, 
we were able to derive abundance‐based distance decay relation-
ships from these theoretically derived maps of SSDs.

The PCP is a stochastic mathematical process of assigning 
clusters of objects (here spectral species) in space according to 

the following: (a) Cluster centres for each object are randomly 
distributed across a landscape assuming a constant cluster 
density. (b) The number of individuals in each cluster is drawn 
from a Poisson distribution. (c) Individuals within each cluster 
are then distributed based on a radially symmetrical Gaussian 
distribution.

In this study, a PCP was produced for each of the 50 spectral 
species across each of the three landscapes according to the follow-
ing process:

1.	 Empirical Ripley’s K curves were derived for each spectral 
species in each landscape using the r package Spatstat (Baddeley 
& Turner, 2005)

2.	 When a Ripley’s K curve is calculated for a PCP, it can be shown to 
have the functional from presented in Equation (1) (Plotkin et al., 
2000). Consequently, we use an inverse modelling framework to 
match each empirically derived Ripley’s K curve with Equation (1) 
by adjusting ρ (the density of clusters across the landscape), and μ 
(the intensity of individuals within each cluster).

3.	 Species likelihood probabilities were then determined for 
each spectral species using the ρ and μ values in a PCP in 
concert with the radial Gaussian probability function defined 
in Equation (2). Probabilities from each clump were overlaid 
on top of one another and the maximum likelihood was 
used.

4.	The 50 species likelihood maps (one per spectral species) 
were then normalized based on the abundance of each spec-
tral species in the empirical maps. These likelihoods were then 
used to weight a random draw that was used to condense the 
likelihoods into a single, theoretically based spectral species 
map.

5.	A 1‐ha grid was then fit over the simulated SSD map and the 
Bray–Curtis distance among 1‐ha kernels was calculated in ex-
actly the same way as was done with the empirical data. From 
this grid, theoretical distance decay relationships were calcu-
lated in exactly the same manner as was done with the empiri-
cal spectral data (i.e., by calculating the mean similarity (inverse 
Bray–Curtis) for all paired plots within bins of 100 m.

6.	Steps 2–5 were then repeated 20 times, to generate 20 distinct 
theoretical spectral species maps and associated distance decay 
curves. The final curves presented were the mean of means within 
each 100‐m bin and the standard deviations of the means.
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3  | RESULTS

3.1 | Validation with forest plot data

At Allpahuayo Mishana, our estimates of species compositional 
turnover derived from spectral data were strongly correlated with 
field plot‐based measures of beta‐diversity (R2 = 0.85; p < 0.001; 
Figure 3). However, the residual variance was higher among only 
terra firme forest plots (R2 = 0.29; p = 0.05) than among only 
white‐sand forest plots (R2 = 0.76; p < 0.001). At Jenaro Herrera, 
there was also a highly significant relationship between beta‐di-
versity estimated with our spectral approach and field‐measured 
beta‐diversity (p = <0.001), although there was more residual vari-
ance at this site than at Allpahuayo Mishana (R2 = 0.68). Most of 
the variation in the relationship between spectral and plot data 
came from palm swamp forests, which were poorly distinguished 
in the second NMDS axis; instead, the third NMDS axis was more 
useful at identifying areas of palm swamp (Figure S2). The relation-
ship between spectral composition and species composition was 
consistent across two landscapes, and among different field plot 
datasets that were established using different sampling protocols 
with different stem diameter size limits.

3.2 | Mapping beta‐diversity

Our spectrally derived maps of estimated tree species compo-
sition demonstrate clear gradients across the three study land-
scapes (Figure 4). However, the underlying determinants of these 
floristic gradients appear to be different among the three sites. 
At Allpahuayo Mishana, the three NMDS axes show similar spatial 
patterns (Figure 4 and Figure S1), with NMDS axes 2 and 3 ad-
ditionally containing a substantial element of sampling artefact 
(i.e., clear striping). This relative uniformity across NMDS axes 
suggests there is a single predominant floristic gradient at this 
site, because, if multiple important floristic gradients were pre-
sent, we would expect them to be reflected in different NMDS 
axes. Combined with field validation data, our spectrally derived 
maps indicate that the primary floristic gradient at this site re-
flects an underlying edaphic gradient from nutrient‐rich terra 
firme clay soils, to nutrient‐poor white‐sand soils. These white‐
sand forests were always found at higher elevations (>145 m a.s.l.) 
at Allpahuayo Mishana.

Our estimates of tree species composition also suggest that 
there is a strong spatial gradient in floristic composition at Quebrada 
Braga. Similar to Allpahuayo Mishana, consistency among NMDS 
axes suggests there is a single primary floristic gradient at Quebrada 
Braga (Figure 4 and Figure S2). Somewhat surprisingly, this floristic 
gradient did not correspond strongly with elevation. The Quebrada 
Braga landscape is seasonally flooded by the large and nutrient‐
rich Ucayali River, which surrounds this landscape on three sides. 
Therefore, elevation will primarily determine the intensity and dura-
tion of this seasonal flooding.

Jenaro Herrera appears to be a more complex landscape than 
the other two, as it contains three distinct floristic gradients, 

demonstrated by three distinctive NMDS axes (Figure 4 and 
Figure S3). This landscape appears to contain two forms of 
flooded forest, one flooded by nutrient‐rich white water from the 
large Ucayali River and another flooded by nutrient‐poor black 
water. In addition, there are patches of white‐sand forest as well 
as forests that have been significantly impacted by anthropogenic 
activities.

3.3 | Empirical spectral distance decay

We observed a consistent pattern of a rapid decline in floristic 
similarity over distances of 500 m or less across all three forest 
types. Beyond this initial steep decay in similarity, three patterns 
distinguish these landscapes. In white‐sand forests at Allpahuayo 
Mishana, after a rapid decay in similarity over the initial 800 m, there 
was almost no discernible decrease in similarity with increasing dis-
tance (Figure 5a,d).

In seasonally flooded forests at Quebrada Braga, we found a 
constant decay in floristic similarity with increasing distance. As with 
the other two landscapes, this decline was steepest over the initial 
700 m. However, the decline in compositional similarity persisted 
over the entirety of this landscape, as demonstrated by the consis-
tently negative differential values (Figure 5b,d).

Finally, in terra firme forests at Jenaro Herrera we found a steep 
decay in compositional similarity over 500 m, followed by a more 
gradual decline up to distances of 3 km (Figure 5c,d). Beyond 3 km 
there was no discernible decrease in similarity with increasing dis-
tance up to 10 km. Additionally, at Jenaro Herrera, there was greater 
overall variation in compositional similarity across all distances com-
pared with the other two sites, as shown by the wider error bars. 
We attribute this variation to the greater environmental variation at 
this site, as well as greater overall species diversity in terra firme for-
ests as opposed to both white‐sand forests and seasonally flooded 
forests.

3.4 | Theoretical distance decay model

Overall the theoretical models derived from our PCP approach 
poorly represented the three empirical (spectrally derived) distance 
decay relationships (Figure 5). At Allpahuayo Mishana, although the 
form of the theoretical distance decay relationship was very simi-
lar to that derived from the empirical data, the theoretically derived 
distance decay generally overestimates similarity relative to the 
empirical data (Figure 5a). Similarly, Figure 5b shows that at Jenaro 
Herrera, the general pattern of the distance decay relationship was 
reasonably characterized relative to the empirical relationship, but 
the overall distance magnitude was not. At Quebrada Braga, we 
found a very different pattern, with the PCP models predicting a 
sustained sharp decrease in similarity over the first kilometre, which 
was not reflected in the empirical data (Figure 5c). However, the 
shallow but continuous decline in similarity beyond the first kilome-
tre demonstrated by the PCP at Quebrada Braga showed reasonable 
agreement with the empirically based relationship (Figure 5c).
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4  | DISCUSSION

Our results demonstrate that distance decay relationships vary 
among forest types in lowland Amazonia at a landscape scale. This is 
significant, because in contrast with previous plot‐based studies, we 
are able to investigate this distance decay relationship continuously 
across landscapes while simultaneously maintaining high resolution. 
Within terra firme forests, our estimated distance decay curves are 
broadly consistent with a number of previous studies in this region 
(Condit et al., 2002; Duque et al., 2009), showing both rapid decay 
in similarity over short distances, followed by almost no decay at 

distances greater than 4 km. The two other forest types that we 
investigated also demonstrate this initial rapid decline in similarity 
over the first kilometre, supporting the idea that canopy tree spe-
cies across forest types are spatially aggregated over scales less than 
1 km (Condit et al., 2000). However, beyond this first kilometre, pat-
terns of distance decay sharply differ among different forest types.

The variation in distance decay among forest types is particularly 
apparent in seasonally flooded forests, which shows a strong and 
relatively continuous decline in similarity with increasing distance. 
There are few plot‐based estimates of distance decay relationships 
in seasonally flooded forests with which to compare our data (but 

F I G U R E  4   Maps of the three study 
landscapes, Allpahuayo Mishana (AM), 
Jenaro Herrera (JH), and Quebrada Braga 
(QB), The maps show RGB true colour 
(column 1), LiDAR‐derived elevation 
(column 2), and spectrally derived 
estimates of tree species composition, 
summarized by a single NMDS axis 
(column 3) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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see Draper, Honorio Coronado, et al., 2018; Wittmann et al., 2006). 
Nevertheless, our broad pattern of continuous decline in similarity 
appears to be consistent with these plot‐based analyses. Much of 
the variation in spectral species composition across the Quebrada 
Braga landscape appears to be broadly independent of elevation. As 
elevation here should be a reasonable proxy for flooding duration 
and intensity, our data suggest that flooding duration and intensity 
are not the most important determinant of species composition in 
this landscape. This contrasts with a number of previous studies that 
have found flooding depth and duration to be the most important 
determinants of species composition (Assis, Wittmann, Piedade, 
& Haugaasen, 2015; Junk et al., 2011; Wittmann et al., 2006; 
Wittmann, Junk, & Piedade, 2004).

Instead, our results appear to emphasize the importance of dis-
turbance in determining species composition at this site. Disturbance 
has been recognized as an important driver of beta‐diversity in West 
Amazonian floodplain forests (Puhakka, Kalliola, Rajasilta, & Salo, 
1992; Salo et al., 1986). This may be especially true in Quebrada 
Braga as it is surrounded by the large and dynamic Ucayali River, 
which migrates laterally over decadal time‐scales (Salo et al., 1986; 
Schwenk, Khandelwal, Fratkin, Kumar, & Foufoula‐Georgiou, 2017). 
Therefore, while some areas might have experienced large‐scale dis-
turbance relatively recently, other areas may not have been disturbed 
for many decades or centuries. Such disturbance patterns would 
also be spatially auto‐correlated, and therefore consistent with the 
distance decay patterns we observe. The discrepancy between our 
study and previous plot‐based studies (e.g., Assis et al., 2015; Junk 
et al., 2011; Wittmann et al., 2004; Wittmann et al., 2006) may arise 
from plot‐based studies sampling predominantly mature seasonally 
flooded forests over disturbed forests, while our study samples the 

whole landscape without this apparent bias. Fluvial disturbance is 
not the only form of large‐scale spatially auto‐correlated distur-
bance that may be driving beta‐diversity patterns in Amazonian for-
ests; for example, in central Amazonia large blow‐down events have 
an important role in driving turnover in species composition (Marra 
et al., 2014).

In white‐sand forests, the initial rapid decline in similarity with 
increasing distance is even more pronounced than in the other for-
est types and does not persist beyond the initial 800 m. This ini-
tial rapid decay may reflect the patchiness of white‐sand forests at 
Allpahuayo Mishana. Patches of white‐sand forests at this site are 
frequently smaller than 800 m across, and ecological similarity is 
likely to be higher within a patch than between patches. In this way, 
white‐sand forest tree communities may be functioning as meta‐
communities, separated by terra firme forests (Adeney, Christensen, 
Vicentini, & Cohn‐Haft, 2016; Palacios et al., 2016). The lack of 
declining similarity with increasing distance beyond 800 m is con-
sistent with some published distance decay curves for white‐sand 
forests in this region (Draper, Honorio Coronado, et al., 2018), while 
others that have been developed for much broader spatial scales ap-
pear to show a more constant decay (García‐Villacorta, Dexter, & 
Pennington, 2016; Guevara et al., 2016), presumably because they 
include several compositionally distinct floras.

Jenaro Herrera presents a different, and perhaps more complex 
pattern than in the other landscapes, indicated by the three NMDS 
axes showing distinct spatial patterns that reflect different underly-
ing gradients. For example, patches of white‐sand forests and terra 
firme forests are clearly distinct in NMDS axis 2, while palm swamp 
forests appear more strongly in the third NMDS axis. Furthermore, 
unlike the other two landscapes, Jenaro Herrera appears to show 

F I G U R E  5   Distance decay relationships in three examples of forest types in the three different landscapes: white‐sand forests at 
Allpahuayo Mishana (a); terra firme forest at Jenaro Herrera (b); seasonally flooded forest at Quebrada Braga (c). Points indicate mean Bray–
Curtis indices of similarity every 100 m, and shaded areas are the standard deviations surrounding each 100 m point. (D) The loess smoothed 
line (span = 0.35) through the first order derivative, calculated every 100 m at each site. Colours correspond to different landscapes/forest 
types: red = Allpahuayo Mishana white‐sand, blue = Jenaro Herrera terra firme clay, green = Quebrada Braga seasonally flooded. Solid 
black lines indicate the mean Poisson Cluster Process theoretical predicted distance decays, and dashed black lines the standard deviations 
surrounding these means [Colour figure can be viewed at wileyonlinelibrary.com]
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a strong anthropogenic disturbance gradient, which can be seen in 
high values in NMDS axis 1 that cluster near the town (Figure S1). 
This apparently high level of anthropogenic disturbance is in some 
ways unsurprising as Jenaro Herrera supports a larger population 
than the other two sites and is surrounded by forests that are ac-
cessible and without formal legal protection. This contrasts with the 
other two landscapes, with Allpahuayo Mishana being accessible 
but protected and Quebrada Braga being unprotected but further 
from human development and due to seasonal flooding, relatively 
inaccessible.

A clear feature revealed by our LiDAR‐derived DEM at Jenaro 
Herrera is the sharp increase in elevation that bisects the land-
scape from West to East (Figure 4). This geological feature appears 
to be a boundary between the upland Tertiary Iquitos geanticline 
and Pleistocene alluvial terraces (Dumont, Deza, & Garcia, 1991; 
Dumont, Lamotte, & Kahn, 1990; Rasanen, Nellerf, Saloj, & Jungner, 
1992). Interestingly, this boundary appears to have little impact on 
floristic composition unlike other geological features in this region 
(Higgins et al., 2012, 2011 ). While field data will be required to con-
firm that there is little floristic turnover across this boundary, the 
boundary does not appear in local floristic classifications nor in maps 
of forest types (Honorio et al., 2008; López Parodi & Freitas, 1990).

We were able to validate our approach by comparing our spec-
trally derived estimates of beta‐diversity with an extensive network 
of 53 forest plots distributed across two sites. Overall, this com-
parison provides compelling evidence that high‐fidelity imaging 
spectroscopy can be used to understand the spatial organization 
of biodiversity in hyperdiverse tropical forests. Our results show 
highly significant linear relationship between spectrally derived 
and plot‐based estimates of beta‐diversity consistent with previous 
studies that have used similar unsupervised approaches (Baldeck 
& Asner, 2013; Féret & Asner, 2014a, 2014b; Somers et al., 2015). 
Importantly, this strong relationship is preserved across plots using 
both 2‐ and 10‐cm‐diameter cut‐offs. As the spectral signal is de-
rived entirely from the uppermost canopy layer, our results suggest 
that canopy‐level species composition may an excellent proxy for 
species composition in understorey strata in these landscapes. The 
weaker relationship between spectral similarity and floristic similar-
ity in terra firme forests may reflect the fact that fewer canopy spe-
cies were recorded in this forest type. This is because the majority 
of stems recorded in the 0.1‐ha plots are <10 cm dbh, which will not 
reach the forest canopy in these tall forests. In the shorter stature 
white‐sand forests, a larger proportion of small‐stemmed trees will 
reach the canopy and therefore will be included in the spectral data.

Across all forest types, the distance decay relationships derived 
from the theoretical PCP compared poorly with the comparable em-
pirical data. This mismatch suggests that the decay in community 
composition cannot be easily predicted by the clustering of con-
specific individuals following a PCP. Major limitations of the PCP 
approach include the assumption that conspecific individuals are 
aggregated at a single scale, and the assumption that each clump 
of individuals throughout the landscape has the same Gaussian dis-
persal pattern (Morlon et al., 2008). The single scale of aggregation 

assumption may be largely correct at small spatial scales (≤50 ha) in 
relatively homogenous environments (Morlon et al., 2008), where 
trees are aggregated mainly at small scales <50 m (Condit et al., 
2000). However, at larger spatial scales (>500 ha), conspecific in-
dividuals aggregate at a range of different scales due to dispersal 
limitation, environmental specificity, Janzen–Connell effects, and 
competition among individuals (Levin, 1992; Wiegand, Gunatilleke, 
Gunatilleke, & Okuda, 2007). Similarly, a species is unlikely to have 
constant density across a 50‐ha plot, however, across a landscape 
>1,000 ha, assuming a constant density becomes an even less plau-
sible assumption. Our results demonstrate that these assumptions 
would need to be relaxed in order to reasonably predict distance 
decay relationships a landscape scales from theoretical spatial point 
process models such as the PCP.

Furthermore, our theoretical approach calculates PCP distribu-
tions for each spectral species independently; these distributions 
are then combined into a single map using random draws weighted 
by the landscape abundance of each spectral species in the empirical 
spectral species map. Our approach does not include interactions 
among species and between species and the environment, instead 
assuming the landscape is a homogeneous plane. Incorporating 
these biotic and abiotic interactions in future models could provide 
a way to further explore the relative influence of neutral and niche 
processes at landscape scales. Finally, our PCP was parameterized 
with by SSDs. It is possible that parameterization based on actual 
species distribution data, which would be extremely difficult to col-
lect at such large scales, may lead to different results. An approach 
integrating field and SSDs could provide further insight.

A more general limitation of our approach is that we cluster the 
spectral signal of the entire landscape into just 50 spectral species 
and assume they are representative of hyperdiverse tropical forest 
landscapes that will contain hundreds (if not thousands) of tree spe-
cies. While this approach is well supported by both our comparisons 
with field data, and previous work that has shown 40 spectral spe-
cies to be optimal (Féret & Asner, 2014a), there are limitations. In 
general, it is likely that common canopy species will dominate the 
spectral signal as they make up a far greater proportion of the sunlit 
canopy, while rare and or understorey species will be underrepre-
sented. Rare species are thought to have more localized and envi-
ronmentally specific distributions (Hubbell, 2013), and therefore, the 
extent to which common species can be used to investigate spatial 
patterns of beta‐diversity merits further investigation.

Additionally, using 50 spectral species elevates the similarity 
among plots within each forest type. This is especially evident in 
white‐sand forests, where overall similarity is far higher in our spec-
tral‐based analysis than has been found previously in plot‐based 
studies (Draper, Honorio Coronado, et al., 2018; Fine et al., 2010; 
García‐Villacorta et al., 2016; Guevara et al., 2016). Many white‐sand 
specialist tree species share functional characteristics that are likely 
to make them spectrally similar, such as increased leaf thickness and 
toughness, as well as lower concentrations of foliar N and P (Asner, 
Knapp, Anderson, Martin, & Vaughn, 2016; Fortunel, Paine, Fine, 
Kraft, & Baraloto, 2014; Fyllas et al., 2009). Therefore, the diversity 
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within white‐sand forests may be poorly represented by our ap-
proach, resulting in an artificial increase in similarity between plots. 
However, the tight correlation between spectral and plot‐based es-
timates of species composition in white‐sand forests suggests that 
despite the overall increase in similarity among plots, our approach is 
still able to capture the main correlates of plot diversity.

The strength of our approach is that we can apply this method 
continuously to much larger areas than would be impossible using 
field data alone. Therefore, there is great potential for using our 
method to quantify beta‐diversity and distance decay relationships 
continuously over far greater spatial extents. Furthermore, our ap-
proach is not only able to quantify beta‐diversity but also to pre-
cisely geo‐locate where turnover occurs and therefore to suggest 
which environmental features may be important. We suggest that 
unsupervised spectral‐based approaches, such as ours, can be used 
to actively guide field efforts to areas containing floristic assem-
blages that are poorly represented by current plot networks. We 
advocate for closer collaboration among ecologists using field‐based 
data and those using imaging spectroscopy data.

In summary, this study demonstrates that distance decay rela-
tionships vary substantially among landscapes and forest types in 
lowland Amazonia, consistent with much of what has been found 
previously using field plot‐based data. Nevertheless, we also present 
findings that challenge previous hypotheses regarding the environ-
mental drivers of tree species composition. In particular, we suggest 
that edaphic properties and topography may not always be the most 
important determinants of floristic composition, and in dynamic 
floodplain landscapes, disturbance may be a more important driver 
of tree species composition. Comparing estimates derived from our 
spectral data with a large dataset of forest plots, we provide com-
pelling evidence for the validity of our approach, not only in clas-
sifying broad forest types but also in describing subtle changes in 
floristic composition. Finally, our results demonstrate that distance 
decay relationships are driven by conspecific individuals aggregating 
at a range of nested scales across landscapes. Reproducing these 
patterns from theory will require the assumptions of PCP models to 
be relaxed.
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